在这项研究中,开发了用于踩踏过程中定量动态拟合的实时评估系统。该系统由LED标记,连接到计算机的数码相机和标记检测程序。LED标记附着在矢状面上的臀部,膝盖,踝关节和第五元。PlayStation3 Eye被选为本文中的主要数码相机具有许多使用运动捕获的优点,例如高FPS(每秒帧)约180fps,320×240分辨率和易于使用的低成本。制造商检测程序是通过将LabView2010与Vision Builder一起使用的。该程序由三个部分组成:图像采集和处理,标记检测和关节角度计算以及输出部分。数码相机的映像是在95FPS中获取的,并且设置了程序以实时测量较低的接头角度,以将用户作为图形提供,并允许将其保存为测试文件。通过使用Holmes方法在每个马鞍高度下在每个马鞍高度处进行三个鞍高度(膝盖角:25、35、45 O)和三个节奏(30、60、90 rpm)的踩踏板验证系统,这是一种测量下肢角度的方法,以确定鞍高的高度。结果显示,系统的平均误差和强相关性,分别是1.18±0.44 o,0.99±0.01 o。由于马鞍高度的变化,几乎没有错误,但节制发生了绝对错误。考虑到平均误差约为1°,它是用于定量动态拟合评估的合适系统。在未来的研究中,必须使用两个具有额叶和矢状平面的数码相机来减少误差。
图 1. 突变线粒体 DNA (mtDNA) 的遗传特征和致病表达模型。人们认为,mtDNA 中的突变会随着衰老而积累。仍有许多未解之谜,比如这些突变是如何遗传和增加的,从而导致线粒体功能下降,甚至随着时间的推移导致细胞和个体功能下降(详情见正文)。
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
电气和电子工程师协会 › iel7 作者 C Wang · 2022 · 被引用 1 — 作者 C Wang · 2022 被引用 1 (MPI) [27],并行计算中的通信标准。... 基于代理的电力系统建模和仿真的计算。
通用缩放定律控制跨越平衡连续相变时产生的拓扑缺陷的密度。kibble-zurek机制(KZM)预测了缓慢淬火的淬火时间的依赖性。相比之下,对于快速淬火,缺陷密度以淬火的幅度普遍尺度。我们表明,通用缩放定律适用于由振荡外部场驱动的动态相变。系统对周期电势场的能量响应的差异导致能量吸收,对称性的自发断裂及其恢复。我们验证了相关的通用缩放定律,提供了证据表明,可以通过与KZM结合的时间平均临界指数来描述非平衡相变的关键行为。我们的结果表明,临界动力学的普遍性超出了平衡关键性,从而促进了对复杂非平衡系统的理解。
摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
共同基金的目的是在五年的最低投资期内为股票和固定收益市场提供灵活的管理。尽管在较大的分配限制范围内运行,但可以将共同基金的概况与由65%的股票和35%的公共债券和私人债券组成的分配进行比较,该股票平均在发达市场中曝光,并在发达市场和新兴市场中。共同基金将被积极管理,而无需提及基准指数。投资策略是可行的,是基于在三个支柱周围组织的投资组合管理过程:•根据经理的定罪水平(资产类别,地理领域,部门),在中等/长期的战略资产分配的不同,•由经理的短期管理机构而造成的投资,以征服市场机会,以征服市场的投资,以征收•选择的投资机会,••选择范围的选择。根据我们的说法,随着时间的推移会产生性能。
动态治疗方案(DTRS)提供了一种系统的方法来制定适合个人患者特征的顺序治疗决策,尤其是在感兴趣的生存结果的临床环境中。审查感知树的增强学习(CA-TRL)是一个新的框架,可在估计最佳DTR时解决与审查数据相关的复杂性。我们探索从观察数据中学习有效DTR的方法。通过增强基于树木的增强学习方法,具有增强的反可能性加权(AIPW)和审查感知的修改,CA-TRL提供了强大而可解释的治疗策略。我们使用SANAD癫痫数据集通过广泛的模拟和现实世界应用来展示其有效性,在该数据集中,它的表现优于最近提出的关键指标中提出的ASCL方法,例如受限的平均生存时间(RMST)和决策精度。这项工作代表着跨不同医疗机构的个性化和数据驱动的治疗策略迈出的一步。
自动化工厂、核电站、电信中心和空间站等设施的计算机控制操作环境正变得越来越复杂。随着这种复杂性的增加,使用集中管理和调度策略来控制此类环境将变得越来越困难,这些策略既能应对意外事件,又能灵活应对可能随时间发生的操作和环境变化。解决这个问题的一个越来越有吸引力的方法是将此类操作的控制权分配给许多智能的、能够完成任务的计算代理。现实世界领域可能由多个代理组成。在这样的领域中,代理通常会执行许多复杂的任务,这些任务需要在一定程度上关注环境变化、时间限制、计算资源界限以及代理的短期行动可能对其长期目标产生的影响。在现实世界中操作意味着必须在时间和空间的多个粒度级别上处理意外事件。虽然代理必须保持反应能力才能生存,但如果代理要与其他代理协调其行动并以有效的方式处理复杂任务,则需要一定程度的战略和预测决策。本论文提出了一种新的集成代理架构,旨在为具有
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。
