估计相机和激光雷达之间的相对姿势对于促进多代理系统中复杂的任务执行至关重要。尽管如此,当前的方法论遇到了两个主要局限性。首先,在跨模式特征提取中,它们通常采用单独的模态分支来从图像和点云中提取跨模式特征。此方法导致图像和点云的特征空间未对准,从而降低了建立对应关系的鲁棒性。第二,由于图像和点云之间的比例差异,不可避免地会遇到一到一对像素点的对应关系,这会误导姿势优化。为了应对这些挑战,我们通过学习从p ixel到p oint sim Imarlities(i2p ppsim)的基本对齐特征空间来提出一个名为i Mage-p oint云注册的框架。I2P PPSIM的中心是共享特征对齐模块(SFAM)。 它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。 受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。 此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。 此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。 为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。I2P PPSIM的中心是共享特征对齐模块(SFAM)。它是在粗到精细体系结构下设计的,并使用重量共享网络来构建对齐特征空间。受益于SFAM,I2P PPSIM可以有效地识别图像和点云之间的共同视图区域,并建立高可责任2D-3D对应关系。此外,为了减轻一对一的对应问题,我们引入了一个相似性最大化策略,称为点最大。此策略有效地过滤了异常值,从而确立了准确的2D-3D对应关系。为了评估框架的功效,我们进行了有关Kitti Odometry和Oxford Robotcar的广泛实验。结果证实了我们框架在改善图像到点云注册方面的有效性。为了使我们的结果可重现,源代码已在https://cslinzhang.github.io/i2p上发布。
摘要 - 由于LiDar,Camera和IMU之间的固有互补性,最近对激光 - 视觉惯性大满贯付出了越来越多的努力。但是,现有方法在两个方面受到限制。首先,在前端,它们通常采用离散的时间表示,需要高精度硬件/软件同步,并基于几何激光功能,从而导致稳健性和可扩展性低。第二,在后端,视觉循环限制遭受了规模的歧义和点云的稀疏性,扫描到扫描环的检测恶化。To solve these problems, for the front-end, we propose a continuous-time laser-visual-inertial odometry which formulates the carrier trajectory in continuous time, organizes point clouds in probabilistic submaps, and jointly optimizes the loss terms of laser anchors, visual reprojections, and IMU readings, achieving accurate pose estimation even with fast motion or in unstructured scenes where it is difficult to extract meaningful几何特征。在后端,我们通过通过激光辅助视觉重新定位匹配预计的2D子包和6-DOF视觉约束来建立5-DOF激光限制,从而确保在大型场景中映射一致性。结果表明,我们的框架实现了高精度的估计,并且比载体在大型场景或快速移动时工作时更健壮。相关的代码和数据在https://cslinzhang.github.io/ct-lvi/ct-lvi/ct-lvi.html上进行开源。
摘要目的:本研究的目的是(1)在与发育协调障碍(DCD)中量化关注和执行功能,(2)评估某些与DCD的儿童是否更有可能表现出注意力困难,并且(3)表征大脑的大脑相关性运动和注意力不足。方法:53岁的儿童(36岁,有17岁,没有17岁),年龄在8至10岁之间,未达到T1加权和扩散加权磁共振成像,以及标准化的注意力和运动评估。父母填写了执行功能和注意力不集中和多动症症状的问卷。我们评估了区域皮质厚度和表面积,小脑,call和原发性运动道结构。结果:对协方差和一个样本t检验的分析确定了受损的注意力,非运动处理速度以及DCD儿童的执行功能,但部分Spearman的等级相关系数表明,这些系数表明这些是彼此无关的或运动不足的类型或运动型或严重性的。强大的回归分析表明,后扣带中的皮质形态与DCD儿童的总体运动技能和注意力不集中症状有关,而总运动技能也与左皮脊髓束(CST)形态有关。解释:患有DCD的儿童可能会受益于常规关注和超级活动评估。后扣带回和CST的改变可能与DCD儿童运动过程中的前进模型受损有关。总体而言,这些区域的改变可能解释了DCD儿童的非运动障碍率高。