1959年David Baltimore Swarthmore College A.果蝇和Neurospora sandra Edwards Goucher College M. Demerec细菌遗传学Frederick Gilman Michigan State H. Gay Electron Microscopy and Mistogenetics Lucie Hicks Lucie Hicks lucie lucie eymeyoke Collece Mount Oremeyoke Collectics Mount eymereyoke Collece p.e.Hartman细菌遗传学Nancy Metnick Rutgers University R.D. Hotchkiss肺炎球菌转化Samuel Piel Harvard大学B.P. Kaufmann电子显微镜和细胞遗传学Robert Reinhold Johns Hopkins S.E. 噬菌体的luria遗传学Philip Shambaugh Princeton University P. Margolin细菌遗传学George Trager Cornell University H. Moser组织培养正常和恶性哺乳动物细胞Carole weisbrot weisbrot weisbrot weisbrot weisbrot brooklot brooklot brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklot brooklyn g.Hartman细菌遗传学Nancy Metnick Rutgers University R.D.Hotchkiss肺炎球菌转化Samuel Piel Harvard大学B.P. Kaufmann电子显微镜和细胞遗传学Robert Reinhold Johns Hopkins S.E. 噬菌体的luria遗传学Philip Shambaugh Princeton University P. Margolin细菌遗传学George Trager Cornell University H. Moser组织培养正常和恶性哺乳动物细胞Carole weisbrot weisbrot weisbrot weisbrot weisbrot brooklot brooklot brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklot brooklyn g.Hotchkiss肺炎球菌转化Samuel Piel Harvard大学B.P.Kaufmann电子显微镜和细胞遗传学Robert Reinhold Johns Hopkins S.E. 噬菌体的luria遗传学Philip Shambaugh Princeton University P. Margolin细菌遗传学George Trager Cornell University H. Moser组织培养正常和恶性哺乳动物细胞Carole weisbrot weisbrot weisbrot weisbrot weisbrot brooklot brooklot brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklot brooklyn g.Kaufmann电子显微镜和细胞遗传学Robert Reinhold Johns Hopkins S.E.噬菌体的luria遗传学Philip Shambaugh Princeton University P. Margolin细菌遗传学George Trager Cornell University H. Moser组织培养正常和恶性哺乳动物细胞Carole weisbrot weisbrot weisbrot weisbrot weisbrot brooklot brooklot brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklok brooklot brooklyn g.
(b)中心体是细胞中产生微管的区域。在动物细胞中心体内,有一对称为中心元的小细胞器。在动物细胞分裂期间,中心体划分和中心元素复制(制作新副本),而其凝结形式的每种染色体都由沿着长度的某个点结合的两个染色单体组成。此依恋点称为Centromere。
细胞膜含有多种脂质,由于缺乏原位控制调节膜组成的方法,人们对于单个脂质生物学功能的了解一直受到阻碍。在这里,我们提出了一种编辑磷脂的策略,磷脂是生物膜中最丰富的脂质。我们的膜编辑器基于细菌磷脂酶 D (PLD),它通过水或外源醇对磷脂酰胆碱进行水解或转磷脂酰化来交换磷脂头部基团。利用哺乳动物细胞中活性依赖性的定向酶进化,我们开发并从结构上表征了一个“超级PLD”家族,其活性比野生型 PLD 高 100 倍。我们证明了超级PLD 在活细胞中特定细胞器膜内光遗传学编辑磷脂以及体外生物催化合成天然和非天然设计磷脂的实用性。除了超级PLD之外,哺乳动物细胞中基于活动的定向酶进化是一种可推广的方法,可以设计出额外的化学酶生物分子编辑器。
I. 简介 AAVpro CRISPR/SaCas9 系统用于制备腺相关病毒 (AAV) 载体,以将编码 CRISPR/SaCas9 介导的基因组编辑所需成分的基因 [即单向导 RNA (sgRNA) 和 SaCas9 核酸酶] 递送至哺乳动物细胞。这种基于 AAV 的单载体系统使用来自金黄色葡萄球菌的 Cas9 (SaCas9),其编辑效果与更常用的化脓性链球菌 Cas9 (SpCas9) 相似,但短约 1 kb。通过使用较小的 SaCas9,可以将 SaCas9 和 sgRNA 序列装入单个载体中,并在体外和体内对多种哺乳动物细胞实现有效的基因组修饰。 AAVpro CRISPR/SaCas9 无辅助系统 (AAV2)(货号 632619)是一个完整的系统,包含用于构建定制设计的 sgRNA 表达质粒和制备 AAV 颗粒的试剂。AAVpro CRISPR/SaCas9 载体系统(货号 632618)包含与货号 632619 相同的组件(包装系统除外);详细信息在第 II 部分“组件列表”中列出。
1 Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada, 2 Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada, 3 Department of Biology, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada, 4 Unite ´ de Recherche Clinique et e 'pide·Miologique,北卡罗来纳州夏尔布鲁克市中心,加拿大省夏尔布鲁克,5微生物学和免疫学系,北卡罗来纳大学,美国北卡罗来纳州教堂山教堂山,北卡罗来纳州教堂山,6哺乳动物细胞表达,6个哺乳动物细胞表达,人类健康治疗中心,人类健康研究委员会,加拿大国家医学,QC,QC,QC,QC,QC,QC,QC,QC。 Sherbrooke, QC, Canada, 8 Laboratoire de Microbiologie, CIUSSS de l ' Estrie – CHUS, Sherbrooke, QC, Canada, 9 Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada, 10 Research Centre on Aging, Af fi liated with CIUSSS de l ' Estrie-CHUS, Sherbrooke, QC, Canada
摘要 荧光蛋白 (FP) 标记是细胞生物学的基础方法,因为它可以观察活细胞中的蛋白质分布、动态和与其他蛋白质的相互作用。然而,使用标记蛋白过表达的典型方法可能会扰乱细胞行为并引入定位伪影。为了保持天然表达,可以将荧光蛋白直接插入内源基因中。这种方法在酵母中已经是标准做法几十年了,最近随着 CRISPR/Cas9 的出现,在无脊椎动物模型生物中也成为标准做法。然而,由于同源定向修复 (HDR) 效率低下,内源荧光蛋白标记尚未在哺乳动物细胞中广泛使用。在这里,我们描述了一种简化的方法,用于通过小鼠胚胎干细胞中的非同源末端连接 (NHEJ) 将 FP 标签高效快速地整合到天然基因座中。我们的方案最大限度地减少了使用通用供体的克隆,允许对内源蛋白进行 N 端或 C 端标记,并且从转染到成像只需不到 2 周的时间,从而提高了 FP 敲入在哺乳动物细胞中的适用性。简介荧光蛋白(FP)敲入能够实现内源性标记,从而实现蛋白质可视化,而不会产生过表达伪影1。敲入策略可以让研究人员准确观察和测量活细胞中蛋白质表达、定位和相互作用的动态。自20世纪90年代以来,FP敲入一直是酵母中的标准做法,因为这种生物可以通过同源重组有效地整合FP供体2,3。最近,由于CRISPR/Cas9技术的出现10,FP敲入已在秀丽隐杆线虫4-7和果蝇8,9中得到广泛采用。当由单向导RNA(sgRNA)编程时,Cas9会引入靶向的DNA双链断裂(DSB),细胞可以通过同源定向修复(HDR)或非同源末端连接(NHEJ)11进行修复。HDR因其高保真度而受到青睐12-15。然而,HDR 仅在某些细胞周期阶段 16 活跃,并且需要与靶标匹配的同源臂。因此,基于 HDR 的标记效率要低得多 17,18,并且需要在哺乳动物细胞中费力地克隆。为了规避这些限制,最近已引入 NHEJ 来在哺乳动物细胞中进行 FP 敲入 18–26 。一种名为 CRISPR 辅助插入标记 (CRISPaint) 22 的方法特别精简,因为它使用通用供体质粒,因此唯一需要的克隆是构建基因特异性 sgRNA。供体质粒通过转染引入细胞,与靶基因并行被 Cas9 切割,并通过 NHEJ 以非序列特异性的方式整合到靶基因中。为了允许使用任何基因特异性 sgRNA 同时保持正确的阅读框架,CRISPaint 使用通用的“框架选择器”在三种可能的阅读框架之一中切割通用供体 22 。尽管有这些优势,到目前为止,CRISPaint 仅在少数细胞系中进行了测试。此外,目前形式的 CRISPaint 系统仅可进行 C 端插入,这限制了其应用于蛋白质产物可耐受 C 端标记的基因。在这里,我们描述了一种基于 CRISPaint 的改进方法,该方法可在哺乳动物细胞中灵活、快速地在基因的任一端进行 FP 标记。我们的方法高效,需要的克隆最少,并且可以产生在天然调控元件的控制下表达的功能性内源性标记蛋白。我们在小鼠胚胎干细胞 (mESC) 中测试并优化了这种方法。我们在第一次尝试中成功标记了 5/5 个目标,从转染到成像的时间只有 2 周。此外,我们还构建了一组用于多色标记的质粒。总之,这些进展将促进 mESC 和其他哺乳动物细胞中的细胞生物学研究,并可能提供更快、更简单的快速创建敲入小鼠的途径。
以下是使用 DharmaFECT™ 1-4 转染试剂(目录号 T-2001、T-2002、T-2003、T-2004)将合成向导 RNA 转染到表达 Cas9 的培养哺乳动物细胞中的简化方案。合成向导 RNA 可以是合成的单向导 RNA,也可以是与 tracrRNA 复合的合成 crRNA。适用于完成细胞系优化后使用。有关完整详细信息以及优化指南,请参阅技术手册。
遗传编码的DNA记录器非侵入性地将短暂生物学事件转化为细胞基因组中持久的突变,从而可以使用高吞吐量DNA测序1重建细胞体验1。现有的DNA记录器已达到高信息记录2-15,耐用记录3,5–10,13,15-19,多个蜂窝信号的多重记录5-8,19,20以及时间分辨的信号记录记录为5-8,19,20,但在哺乳动物细胞中并非全部。我们提出了一个称为Pechyron的DNA记录器(通过有序插入的Prime编辑21个细胞历史记录记录)。在Pechyron中,哺乳动物细胞经过精心设计,以表达Prime编辑器和Prime编辑指南RNA 21(PEGRNA)的集合,可促进迭代式编辑的迭代回合。在每一轮编辑中,Prime编辑器与恒定的传播序列一起插入可变的三重态DNA序列,该序列会停用以前的序列并激活下一步的插入步骤。编辑可以无限期地继续进行,因为每个插入添加了启动下一步所需的完整序列。因为在任何给定时间只有一个主动目标位点,因此插入以单向顺序依次积累。因此,时间信息是按插入顺序保留的。通过使用只有单个DNA链的主要编辑器来实现耐用性,有效地避免了删除突变,这些突变可能会损坏存储在记录基因座中的信息。高信息含量是通过共表达各种PEGRNA(每个Pegrnas)来确定的,每个Pegrnas都具有独特的三个DNA序列。我们证明,这种PegrNA库的本构表达产生插入模式,以支持细胞谱系关系的直接重建。在替代的Pegrna表达方案中,我们还通过手动脉冲表达来实现多路复用记录,然后从Pechyron记录中重建脉冲序列。此外,我们将特定PEGRNA的表达耦合到特定的生物刺激,这允许哺乳动物细胞种群中化学暴露的暂时分析,多重记录。
摘要:金属基药物,例如顺铂和金诺芬,分别用于治疗癌症和类风湿性关节炎。临床前和临床试验表明,金诺芬和其他金衍生化合物具有抗癌、抗炎、抗菌和抗寄生虫活性。与已知靶向 DNA 的铂类药物不同,金的靶点尚未得到很好的阐明。为了更好地了解金药物在哺乳动物细胞中的靶点和作用,我们在 K562 癌细胞中使用了靶向 CRISPR(ToxCRISPR)筛选来识别调节细胞对金敏感性的基因。我们合成了一种具有强效抗癌活性的新型手性金(I)化合物 JHK-21。最敏感的靶点包括参与线粒体载体、线粒体代谢和氧化磷酸化的蛋白质。进一步分析表明,JHK-21 诱导了线粒体内膜功能障碍,并以不同于金诺芬的方式调节了 ATP 结合盒亚家族成员 C (ABCC1) 的功能。表征金属药物在哺乳动物细胞中的治疗效果和毒性越来越受到关注,以指导未来的药物发现以及细胞和临床前/临床研究。
逆转录子是多种多样的细菌抗噬菌体防御系统。逆转录子操纵子由逆转录酶、辅助蛋白和作为逆转录引物和模板的结构化非编码 RNA 组成。逆转录子目前正在开发成细菌、植物和哺乳动物细胞中的新基因编辑工具。Finkelstein 实验室发现的一种新逆转录子系统 Efe1 在哺乳动物细胞中的基因编辑率高于目前的逆转录子基因编辑标准 Eco1。发现 Efe1 优于 Eco1 的原因可以阐明逆转录子功能背后的分子机制。在这里,我研究了 Efe1 逆转录酶,并使用低温电子显微镜重建了其 RT-msDNA 复合物的 3.9 Å 密度图。Efe1 复合物与 Eco1 复合物非常相似,只是它是一种单体,并且其 msDNA 具有比 Eco1 更刚性的 DNA 茎环。在没有同源 ncRNA 的情况下,Efe1 逆转录酶溶解度急剧下降。 Efe1 逆转录酶也可被 Eco1 ncRNA 溶解并产生 Eco1 msDNA。Efe1 逆转录酶中催化残基的突变会消除 msDNA 的产生并降低溶解度。这些发现有助于了解逆转录酶与 ncRNA 的相互作用,从而决定正确的蛋白质折叠,并为未来单独纯化逆转录酶提供一些指导。