生物融资工程生物制药工程BCHE 4650/6650动物细胞生物制造BCHE 4655/6655代谢工程和合成生物学BCHE 4710/6710 BIO-ELECTRECTROCICAL ENECTORICAL ENECTORIGHER ENECTORIGHER ENECTORIGHER ENECTORIGHER BCHE BCHE 4900特殊主管(BCH ENERIPER BCHE ERESTER INS TRECE STRECTER PRESED BCHECORICAL ERESTICE in BIOCOLICAL ERESES in BIOCOLICAL ERESERE)(3个小时)(3小时)/3小时; 4490/6490环境工程修复设计BIOE 4625组织工程 * Bioe 4740/6740生物材料 * Bioe/Chem 4615/6615软材料 * Engr 4490/6490可再生能源工程工程Engr 4900特殊主题(需要批准)
研究第1单元和第2单元(至少15%的纸张)的所有实验:实验:一个问题:一个问题1)测试淀粉的测试,测试脂质,测试脂质,测试蛋白质,测试糖的糖分2)使用简单的钥匙来使用量的钥匙来识别5个flauna和5 flora的量子,以识别不同的动植物,以便进行量子进行量化的量子,以便进行量子进行量化的量子,以便进行量化的动植物4)4)4)动物5)研究三个非生物因子6)要熟悉并使用光学显微镜7)准备植物细胞并使用光学显微镜检查动物细胞并使用光学显微镜检查8)从这7个实验中分离出DNA的一个问题
CRISPR-Cas9 已为广泛应用的基因编辑带来了巨大进步。为了进一步发挥 Cas9 的效用,人们一直在努力实现对其核酸酶活性的时间控制。虽然不同的方法都侧重于调节哺乳动物细胞中的 CRISPR 干扰或编辑,但所有报道的方法都无法控制细菌中的核酸酶活性。在这里,我们开发了 RNA 接头,将茶碱和 3-甲基黄嘌呤 (3MX) 结合适体与 sgRNA 结合起来,从而实现大肠杆菌中的小分子依赖性编辑。这些可激活的向导 RNA 能够实现对体内基因编辑的时间和转录后控制。此外,它们还减少了因基因组切割而导致的宿主细胞死亡,这是 CRISPR 介导的细菌重组的主要限制。
有多种证据表明区分 Top2 毒药和 Top2 催化抑制剂的重要性。酵母和哺乳动物细胞的研究表明,对 Top2 毒药的抗药性是隐性的,即,在存在药物敏感等位基因的情况下存在耐药 Top2 会导致细胞对药物敏感(详见 5、6 )。酶介导的 DNA 损伤的重要性还通过观察结果得到证实,即 Top2 毒药会迅速引发 DNA 损伤反应,如 ATM 磷酸化和激活下游损伤反应 7-9 。哺乳动物细胞对针对 Top2 的药物的抗药性通常与 Top2 同工型表达降低有关 6 ,这表明抗药性是通过减少酶介导的 DNA 损伤来介导的,而不是通过增强可用的酶活性(抗药性源于 Top2 同工型表达增加)。
摘要我们已经开发了一种无细胞的系统,用于研究哺乳动物细胞中mRNA的合成。该系统由透析和浓缩的全细胞提取物组成,从HeLa细胞,小分子和转录所需的辅助因子和外源添加DNA组成。RNA聚合酶II的准确介绍完全取决于添加含有启动子的真核DNA。在最佳DNA和提取浓度下,易于检测到来自腺病毒血清型2后期启动子的转录起始,并且可以使用超过4000个核苷酸的特定转录本。在体外合成的RNA包含与体内transkipt相同的5'限制RNase T1 Undeclepleotide。RNA合成还可以在早期和中间腺病毒启动子位点准确地启动。
组织和细胞,证明了其在哺乳动物细胞研究中的适用性和高预测能力。在由大脑基金会资助的项目中,Shabala 博士将使用 MIFE 技术研究偏头痛的机制。偏头痛是一种复杂的、致残的大脑疾病,表现为经常剧烈的头痛发作,对光、声音和头部运动有感觉敏感性。偏头痛的患病率为 12%,对经济和社会产生了重大影响。尽管在该领域进行了相对广泛的研究,但偏头痛的病因仍然未知。皮质扩散性抑制 (CSD) 与偏头痛和头痛诱因有关,离子稳态与 CSD 的产生和传播密切相关。Shabala 博士将使用 MIFE 技术观察关键离子对引发 CSD 的因素的反应动力学。该项目旨在
哺乳动物细胞(除红细胞)外,线粒体具有提供能量,中间代谢物的细胞器,以及维持细胞活力,复制和功能的其他活动。线粒体包含称为线粒体DNA(mtDNA)的圆形基因组的多个拷贝,其内部序列很少是相同的(同型),因为遗传或散发性突变会导致多个mtDNA基因型(neteroplasmy)。在这里,我们研究了通过细胞重编程产生的诱导多能干细胞(IPSC)进行的杂质的维持或转移的潜在机制,并进一步讨论可以改变异质质以影响茎和分化细胞性能的杂质。这种额外的见解将有助于开发更强大的基于IPSC的疾病模型和分化的细胞疗法。
CRISPR系统的发现丰富了基因治疗和生物技术的应用。作为一种简单而强大的工具箱,CRISPR系统极大地促进了基因组水平上细胞信号传感器的发展。尽管CRISPR系统已被证明可以从原核细胞中提取出来用于真核细胞甚至哺乳动物细胞,但控制其基因编辑活性仍然是一个挑战。本文总结了通过sgRNA重建构建基于CRIRPR的信号传感器的优缺点,以及重新编程细胞信号网络的可能方式。我们还提出了如何进一步改进目前基于sgRNA-核糖开关的信号传感器的设计。我们相信这些技术的发展和平台的构建可以进一步促进利用合成生物学手段进行环境检测、疾病诊断和基因治疗的发展。
Prime editing(PE)是基于CRISPR-Cas9系统“搜索和替换”方式的一种精准基因组操作技术,同时不需要外源供体DNA,也不需要造成DNA双链断裂(DSB)。相比于碱基编辑技术,Prime editing的编辑范围得到了广泛的扩展。目前Prime editing已在多种植物细胞、动物细胞和模式微生物大肠杆菌中得到成功应用,在动植物育种与基因组功能研究、疾病治疗、微生物菌株改造等方面展现出良好的应用潜力。本文简要介绍了Prime editing的基本策略,并从多个物种的应用角度对其研究进展进行了总结和展望,并概述了提高Prime edit效率和特异性的多种优化策略。
烟酰胺腺嘌呤二核苷酸(NAD +)对于哺乳动物细胞中的各种氧化还原反应是必不可少的,尤其是在能量生产过程中。恶性细胞增加了NAD +生物合成酶的表达水平,用于快速增殖和生物量产生。此外,安装证明表明,降解酶(NADase)在创建免疫抑制性肿瘤微环境(TME)方面发挥了作用。有趣的是,抑制NAD +合成和靶向NADase都对癌症治疗具有积极影响。在这里,我们总结了NAD +产生增加的有害结果,NAD +代谢酶在创建免疫抑制性TME方面的功能,并讨论NAD +合成和靶向NADase的NAD +合成和疗法的抑制剂的进度和临床转化潜力。