控制和显示设计工具和技术人机系统集成:管理和应用极端环境中的人为因素人为因素和操作医学人为因素标准化人为因素测试和评估人为建模和仿真人员选择和分类持续/连续运行系统安全/健康危害/生存能力技术社会/行业工作量用户计算机界面培训中的人为因素用户反馈中的人为因素
过去的表现并不是未来结果的保证。投资涉及风险,包括损失资本的风险。少于一年的绩效收益不到年化。收益是基于单价和无法保留的预扣税的净额。指数退货是不受管理的,并且不会反映任何费用或费用的扣除。指数回报反映了收入,收益和损失的所有项目,以及股息和其他收入的再投资。绩效包括股息和其他公司收益的再投资,并在英镑中进行了计算。请注意,FTSE重述了许多基准的历史索引返回。此事实说明中包含的历史基准索引回报是重述的历史基准指数回报。基金的收益不受此重述的影响。增值回报的计算方法可能显示舍入差异。当基金根据其官方净资产价值(NAV)日历关闭时,但是可以确定基本安全价格的很大一部分,则计算出技术NAV。因此,本文指定的过去的绩效是在需要时使用技术导航以及基金的官方NAV在相关期间与互助的官方NAV进行了计算的。根据交易时的市场条件,披露的任何价差仅指示,并由投资经理的酌处权。在2016年10月31日之前,该基金称为多元化的Beta子基金。*2016年10月31日之前,基准由60%的ftse全球开发/40%镀金所有股票定制指数。**请注意,全球股权由FTSE全球75%的对冲英国税款代表,并包括以比较绩效。***请注意,现金由SONIA复合指数代表,并已包括以比较自基金成立以来的绩效收益。在2021年11月1日之前,该基金的基准是1个月的LIBOR。
1 里昂大学,克劳德·贝尔纳里昂第一大学,法国国家科研中心,Institut Lumi`ere Mati`ere,F-69622,里昂,法国 2 纳米科学与纳米技术中心,法国国家科研中心,巴黎第十一大学,巴黎萨克雷大学,91120 Palaiseau,法国 3 巴黎萨克雷大学,ENS Paris-Saclay,CentraleSup´elec,CNRS,LuMIn,UMR9024,Gif-sur-Yvette 91190,法国 4 纽约城市学院物理系,纽约,纽约州,美国 5 纽约城市大学物理系,研究生中心,纽约,纽约州,美国 6 里昂大学,里昂中央理工学院,里昂国立应用科学学院,克劳德·贝尔纳里昂第一大学,CPE Lyon, CNRS,INL,UMR5270,Ecully 69130,法国 7 圣安德鲁斯大学物理与天文学院,圣安德鲁斯,KY16 9SS,英国 8 图卢兹大学,INSA-CNRS-UPS,LPCNO,135 Av. Rangueil,31077 图卢兹,法国(日期:2025 年 1 月 13 日)
摘要:激子极化子代表了一种有前途的平台,它结合了光子和电子系统的优势,可用于未来的光电设备。然而,由于制造方法成本高、复杂,与为微电子开发的成熟 CMOS 技术不兼容,因此它们的应用目前仅限于实验室研究。在这项工作中,我们开发了一种创新、低成本且与 CMOS 兼容的方法来制造大表面极化子设备。这是通过热纳米压印直接图案化卤化物钙钛矿薄膜来实现的。结果,我们在室温下观察到厘米级上质量因子 Q ≈ 300 的高度均匀的极化子模式。令人印象深刻的是,该工艺提供了高可重复性和保真度,因为同一个模具可以重复使用 10 次以上,以将钙钛矿层压印在不同类型的基板上。我们的研究结果可以为生产在室温下运行的低成本集成极化子设备铺平道路。
近年来,对计算资源的需求巨大,这导致人们投入大量精力从理论上简化复杂问题,并开发各种技术平台来解决特定类别的难题。激子极化子似乎是一种非常有前途的物理系统,是这种技术进步的完美基础。主要研究工作集中在描述高复杂性计算问题与物理系统状态之间的对应关系。结果表明,使用激子极化子,可以实现具有非平凡相配置的 𝑘 -局部哈密顿量,其中 𝑘> 2。除此之外,新贡献在于引入了复杂的耦合切换方法,提供了一种显著提高使用激子极化子平台解决优化问题的成功概率的方法,并且适用于一般的增益耗散模拟器。从算法的角度来看,可以将该方法用作传统计算机架构上的一种有用的启发式方法。此外,还考虑了不同计算任务之间的现有对应关系,并提出了将任意计算任务编码/解码到光学/光子硬件中的方法。考虑了最通用和最复杂的机器学习方法,并考虑了潜在的架构映射。结果表明,使用非线性自旋簇,可以近似预定的架构,累积误差很小,突破了可用计算的极限。这种新的替代方法允许人们在许多凝聚态系统上直接实现神经网络算法,具有各种优点,例如减少了实现更传统的神经网络实现方法所需的额外变量的开销。由于激子极化子具有有前途和诱人的特性,并且具有前瞻性技术,因此除了现有的应用外,还开展了潜在应用的研究,重点是周期性结构及其分析描述。通过强调分析形式,引入的方法可以确定凝聚态的速度分布如何随参数(例如捕获和耗散电位)而变化,从而避免大量计算。建立了行为和相图,为超快信息处理和模拟模拟器的可控激光或极化子流开辟了道路。总而言之,我们可以完全有信心地说,激子-极化子是一个有前途的平台,但尚未充分发挥其潜力。
摘要 — 提出了一种基于欺骗表面等离子体极化激元 (SSPP) 的全空间高扫描速率漏波天线 (LWA),其由 SSPP 设计和矩形周期金属贴片组成。电磁 (EM) 波沿 SSPP 传播并耦合到金属贴片以产生快速辐射波,可实现从后到前频率的波束扫描性能。此外,通过色散关系、空间谐波和电场分布解释了设计的辐射机制。所提出的 LWA 基于 −1 阶空间谐波辐射能量,通过控制贴片的周期可实现全空间和高波束扫描速率性能。仿真结果表明,LWA 在 12.9 至 16.5 GHz 频带内实现从 − 90° 到 90° 的全空间波束扫描,同时天线还保持了 7.35°/% 的高扫描速率。
声子极化子能够实现红外光的波导和定位,具有极强的限制性和低损耗。通常使用互补技术(例如近场光学显微镜和远场反射光谱)来探测此类极化子的空间传播和光谱共振。这里,介绍了红外-可见和频光谱显微镜作为声子极化子光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调红外激光共振激发极化子和对上转换光进行宽场显微镜检测来实现的。该技术用于对 SiC 微柱超表面中局部和传播表面声子极化子的杂交和强耦合进行成像。光谱显微镜允许通过角度相关共振成像同时测量动量空间中的极化子色散,并通过极化子干涉测量法在实空间中测量极化子色散。值得注意的是,可以直接成像强耦合如何影响极化子的空间定位,而这是传统光谱技术无法实现的。在强耦合阻止极化子传播到超表面的激发频率下观察到边缘态的形成。该技术适用于具有破坏反演对称性的广泛极化子材料,可用作快速、非微扰工具来成像极化子杂化和传播。
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制
© 2020 作者。本文根据 Creative Commons Attribution 4.0 International 许可证授权,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供 Creative Commons 许可证的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。