摘要 - 在本文中,我们研究了基于多层结构(ML)的创新卵子阈值开关选择器(OT)。多亏了物理化学分析和电特性,我们显示了如何通过每个单独的层化学计量,厚度和接口的工程来调整MLS的性质和结构。ge/n掺杂的MLS OT,从而揭示了Asepososed材料中存在的结构特征以及接口处的单个层之间的强相互作用。我们证明了通过共扩散技术实现的电气参数的可变性wrt标准OT的可变性,并且MLS OTS的高耐力能力高达2·10 9以上,具有稳定的Na泄漏电流。此外,我们还显示了GE-N键在400℃的OT热稳定性中发挥着重要作用,以及如何在ML OT中更容易调节它们。这些发展为通往新的OTS材料及其工程的道路铺平了道路,从而确保了高温稳定性和对电气表演的最佳调整。
摘要Kava(Piper Methysticum)是Pepper家族中的一种灌木,它原产于南太平洋岛屿。该根在娱乐和治疗目的传统上被用作饮料,它以镇静,抗焦虑和社交能力的促进者而闻名。它在其特有地区以外的地区广受欢迎,并且已广泛使用。由于不同的药理学作用与Kava的不同品种有关,并且由于可以将品种与组成品的特征链接kavalactone和Flavokavains相关,因此对这些成分的测量可以促进该工厂的安全有效使用。在本申请说明中,提出了一种用于准确预测使用HoribaAqualog®和A-TEEM技术进行的光谱吸光度和荧光测量的Kava根主要成分量的方法。使用一组具有已知化学性质的Kava样品建立了部分最小二乘回归的化学计量模型,并讨论了该模型的改进和适当的应用范围。
化学(化学)201通用化学I主题包括元素的元素表,原子结构,量子理论的基本概念,键合,化合物和反应的化学计量,热化学,气态状态,液态和固体,溶液,酸性,酸和基础的基本概念,基本概念。编写分配,适合该学科,是该课程的一部分。资格获得数学140或更高和级别的C或Chem 121或一年的高中化学或部门主席同意的资格。4个实验室小时。 4个讲座。 5个学时。 提供:DA,HW,KK,MX,OH,TR,WR IAI:CHM 911,P1 902L GE:物理科学4个实验室小时。4个讲座。5个学时。提供:DA,HW,KK,MX,OH,TR,WR IAI:CHM 911,P1 902L GE:物理科学
追踪、检测和定量测量细胞和组织中纳米材料的能力推动了它们在生物医学中的日益广泛应用。开发无标记、高分辨率和高维方法,同时可视化多种细胞类型中的二维材料,从而洞察细胞功能和相互作用及其在组织中的空间定位,这对于将纳米材料转化为临床应用至关重要。过渡金属碳化物、氮化物和碳氮化物 (MXenes) [1,2] 是具有多种结构和成分的新兴二维材料。[3,4] 虽然研究最多的 MXene 是 Ti 3 C 2 ,但已报道了 30 多种化学计量成分和至少 20 种固溶体。这些二维薄片的表面覆盖着功能团,写为 T x 。这些基团主要由 O、OH 和 F 组成,因此具有亲水性,易分散于水和生理介质中。由于大多数 MXenes 已被证明具有生物相容性且无细胞毒性,因此它们被广泛用于
脉冲激光沉积(PLD)是一种具有复杂化学计量的薄膜,在成功制造高温超级导管(HTS)以薄膜形式的高温制造后,它引起了很大的研究注意。[1]从那时起,PLD主要用于与晶格匹配底物上多元化合物氧化物外延生长有关的应用,但尚未在光伏(PV)社区中进行探索。尽管在2000年代初通过PLD制造了高度导电的TCO,并通过PLD制造,并在OLEDS [2,3]中成功实现,但关于PV设备中PLD生长的触点的应用仍然很少。文献报道包括用于CIGS [4]的掺杂的ZnO膜和有机的太阳能电池和金属氧化物传输层用于卤化物钙钛矿太阳能电池。[6]此外,已经提出了PLD用于硫化葡萄糖剂吸收剂[7,8],最近,对于卤化物钙钛矿吸收剂层。[9,10]
荧光滴定表明,人类低分子量激肽原 (LK) 能以高亲和力结合两分子的蛋白酶 L 和 S 以及木瓜蛋白酶。相比之下,第二分子的蛋白酶 H 的结合要弱得多。通过滴定法(监测酶活性损失和沉降速度实验)证实了 2:1 的结合化学计量。蛋白酶 L 和 S 与木瓜蛋白酶的结合动力学表明,两个蛋白酶结合位点的结合速率常数 k,,,,, = 10.7-24.5 x 106 M" sI 和 k,,,,, = 0.83-1.4 x 106 M" s-'。将这些动力学常数与完整 LK 及其分离结构域的先前数据进行比较,表明结合较快的位点也是结合较紧的位点,位于结构域 3 上,而结合较慢、亲和力较低的位点位于结构域 2 上。这些结果还表明,两个结合位点之间或来自激肽原轻链的蛋白酶结合没有明显的空间障碍。
在过去的二十年中,荧光转录和翻译报告基因已被用来绘制各种植物组织中 NAP 基因和蛋白质的活性图谱[10-12]。此外,反应成分之间的蛋白质 - 蛋白质相互作用 (PPI) 和蛋白质 - DNA 相互作用网络也已建立[13-16]。这些研究定性地揭示了每个信号蛋白家族的功能,并建立了生长素驱动基因激活的通用机制模型。然而,众所周知,植物组织对生长素的反应极其多样;例如,高浓度的生长素会抑制根的生长,却促进下胚轴的生长[17-19]。这表明单靠定性信息不足以解释不同的生长素敏感性和细胞/组织特异性反应。生长素反应的动态和多样性可以通过细胞蛋白质丰度、PPI/蛋白质-DNA相互作用亲和力、复杂化学计量、周转率等进行加密。在此,我们认为系统定量分析生长素反应是生长素研究的下一个前沿。
脉冲激光沉积 (PLD) 是一种成熟的复杂化学计量薄膜沉积技术,在成功制造薄膜形式的高温超导体 (HTS) 后引起了广泛的研究关注。[1] 从那时起,PLD 主要用于在晶格匹配基板上外延生长多种复合氧化物的应用,但在光伏 (PV) 领域尚未得到探索。尽管在 21 世纪初,高导电性的 In 基 TCO 已通过 PLD 制造并成功用作 OLED 的前触点 [2,3],但关于 PLD 生长触点在 PV 设备中的应用的报道仍然很少。文献报道包括用于 CIGS [4] 和有机 [5] 太阳能电池的掺杂 ZnO 薄膜以及用于卤化物钙钛矿太阳能电池的金属氧化物传输层。 [6] 此外,PLD 已被提议用于硫族化物吸收层的制造 [7,8],最近又用于卤化物钙钛矿吸收层。[9,10]
然而,溶液处理的 SnO 2 需要在约 (150 – 180 C) 下进行后烧结处理。22,23 因为在无氧环境中对化学计量平衡的胶体 SnO 2 进行退火,在隔氧手套箱中进行后烧结可能会导致 SnO 2 中出现氧空位或缺陷,所以这种烧结处理通常在环境空气中进行,这不可避免地会导致氧气吸附 24,25 在纳米晶体 SnO 2 薄膜上。在退火过程中,这些周围的氧分子从物理吸附转化为化学吸附,通过有效地从 SnO 2 导带中提取本征电子,在表面形成 O 2 。26 因此,在钙钛矿和 SnO 2 界面之间形成了能带弯曲和电子屏障,导致 SnO 2 的电导率显著降低。 27 由于这些吸附的 O2 带负电荷,钙钛矿层中光生电子向 SnO2 的传输会受到更多界面电荷的阻碍
基因句法(基因及其调控元件的顺序和排列)决定了天然和合成基因回路的动态协调。一个基因座的转录会极大地影响附近相邻基因的转录,但这种影响的分子基础仍不太清楚。在这里,我们使用人类细胞中的集成报告电路,表明超螺旋介导的反馈以句法特异性的方式调节相邻基因的表达。使用 Region Capture Micro-C,我们测量了人类诱导多能干细胞中超螺旋多聚体的诱导依赖性形成和句法特异性染色质结构。使用句法作为设计参数,我们构建了紧凑的基因回路,调整了不同传递方法和细胞类型中表达的平均值、方差和化学计量。将超螺旋介导的反馈整合到基因调控模型中将扩大我们对天然系统的理解并增强合成基因回路的设计。