根据其法律规定,巴基斯坦的高等教育委员会(HEC)已通过其国家课程修订委员会(NCRC)开发并定期更新课程。这些委员会通常由主题专家,研究人员以及认证机构,专业理事会和行业利益相关者的代表组成。响应不断发展的需求,HEC与巴基斯坦科学院(PAS)合作,已承担了在国家资格资格框架的第6级和7级的生物化学课程中制定强大的学位课程标准的任务。这些标准是根据HEC的本科教育政策对第1(2023年)和研究生教育政策(2023)的精心结构的,可确保与国家优先事项和国际教育标准保持一致。
每个(强制)3。在其余的七个问题中,任何四个问题要回答15分。I.有机分子和反应机制中键合的性质12小时化学键合偶联,交叉结合感应共振效应,炒作共轭,互变异症。Introduction to Aromaticity in benzenoid and non-benzenoid compounds, Three membered, five membered and seven membered compound, alternate and non-alternate hydrocarbon, Huckel's rule, energy level of 𝜋 molecular orbitals, annulenes, azulenes, anti-aromaticity, ᴪ aromaticity, homo-aromaticity, PMO approach for aromaticity.键比共价性化合物,皇冠醚复合物和密码,包含化合物,环糊精,catenanes和rotaxanes。II。 折射机制:结构和反应性12小时的机制类型,反应类型,热力学和动力学需求,热力学和动力学控制,哈蒙德的假设,Curtin-Hammett原则。 势能图,过渡状态和中间体,碳化,碳离子,自由自由基,卡宾尼硝酸盐,Arynes - 产生,结构及其稳定性,确定机制的方法。 iii。 脂肪核取代10小时S n 2,s n 1,混合s n 1和s n 2和设定机制。 相邻的组机制,相邻的小组参与𝜋和𝜎债券,固定辅助。 经典和非经典碳,近代离子,氯基系统,常见的碳定位重排。 在检测碳化液中的NMR光谱法应用。 S n 1机制。II。折射机制:结构和反应性12小时的机制类型,反应类型,热力学和动力学需求,热力学和动力学控制,哈蒙德的假设,Curtin-Hammett原则。势能图,过渡状态和中间体,碳化,碳离子,自由自由基,卡宾尼硝酸盐,Arynes - 产生,结构及其稳定性,确定机制的方法。iii。脂肪核取代10小时S n 2,s n 1,混合s n 1和s n 2和设定机制。相邻的组机制,相邻的小组参与𝜋和𝜎债券,固定辅助。经典和非经典碳,近代离子,氯基系统,常见的碳定位重排。在检测碳化液中的NMR光谱法应用。S n 1机制。在烯丙基,脂肪族三角形和vinylic碳上的亲核取代。iv。芳香的亲核取代
在线零售业影响了超级市场的批量仓库,捕捞和亚马逊的销售,但是它们从东欧或南美等地方进行的散装线条,例如洗衣粉,洗碗片等。通常比在澳大利亚获得同一品牌便宜。
和分子结构,包括离子键,共价键和MO方法。他们还将学习P块和过渡元素(3D系列)的比较研究,以及协调化学和电化学。它将以对芳族碳氢化合物,有机金属和芳基卤化物的基本理解来丰富学生。
课程目标了解农业化学的重要性了解肥料的作用。了解肥料和肥料的影响了解农药研究杀菌剂和除草剂课程的结果了解土壤的基本知识。对植物的养分和肥料进行分类和解释区分肥料和肥料。解释农药的分类。描述杀菌剂和除草剂。
摘要如今,医疗和药物领域的快速改善增加了药物的多样性和使用。然而,诸如在疾病治疗中使用多种或联合药物的问题以及对非处方药的无敏使用的问题引起了人们对药物的副作用概况和治疗范围以及由于药物浪费而引起的副作用概况和治疗范围。因此,对各种培养基(例如生物学,药物和环境样本)中药物的分析是讨论的重要主题。电化学方法对于传感器应用是有利的,因为它们的易于应用,低成本,多功能性,高灵敏度和环保性。碳纳米材料,例如钻石样碳薄膜,碳纳米管,碳纳米纤维,氧化石墨烯和纳米原子石用于增强具有催化作用的电化学传感器的性能。为了进一步改善这种效果,它旨在通过将不同的纳米材料一起或与导电聚合物和离子液体等材料一起使用不同的碳纳米材料来创建混合平台。在这篇综述中,最常用的碳纳米型将根据电化学特征和理化特性进行评估。此外,将在过去五年中对最新研究中对电化学传感器的最新研究产生的影响进行检查和评估。
口腔癌是一种高度恶性疾病,其特征是复发,转移和预后不良。自噬是在压力条件下引起的分解代谢过程,已显示在口腔癌发展和治疗中起双重作用。最近的研究已经确定,口腔上皮细胞中的自噬激活通过抑制诸如雷帕霉素(MTOR)哺乳动物靶标(MTOR)和有丝裂原活化蛋白激酶(MAPK)等关键途径来抑制癌细胞的存活,同时激活腺苷一单磷酸蛋白磷酸蛋白磷酸蛋白基因酶(AMP)。诱导自噬会促进真核起始因子4E的降解,从而减少转移并增强化学疗法,放疗和免疫疗法的效率。此外,自噬诱导可以调节肿瘤免疫微环境并增强抗肿瘤免疫力。本综述全面总结了自噬和口腔癌之间的关系,重点介绍其机制和治疗潜力,并结合常规治疗方法。虽然有希望,但尚待阐明自噬诱导剂在口腔癌治疗中的确切机制和临床应用,为未来的研究提供了新的方向,以改善治疗结果并减少复发。
摘要:高纵横比硅微纳米结构在微电子、微机电系统、传感器、热电材料、电池阳极、太阳能电池、光子装置和 X 射线光学等多种应用领域中具有技术相关性。微加工通常通过反应离子干法蚀刻和基于 KOH 的湿法蚀刻来实现,金属辅助化学蚀刻(MacEtch)作为一种新型蚀刻技术正在兴起,它允许在纳米级特征尺寸中实现巨大的纵横比。到目前为止,文献中缺少对 MacEtch 的专门综述,既考虑了基本原理,也考虑了 X 射线光学应用。本综述旨在提供全面的总结,包括:(i)基本机制;(ii)在垂直于 <100> Si 基底的方向上进行均匀蚀刻的基础和作用;(iii)用 MacEtch 制造的几个 X 射线光学元件示例,例如线光栅、圆形光栅阵列、菲涅尔区板和其他 X 射线透镜; (iv) 吸收光栅完整制造的材料和方法以及在基于 X 射线光栅的干涉测量中的应用;以及 (v) X 射线光学制造的未来前景。本综述为研究人员和工程师提供了对 MacEtch 作为 X 射线光学制造新技术的原理和应用的广泛和最新的理解。
玛丽· K·坎贝尔 玛丽· K·坎贝尔是曼荷莲学院的化学名誉教授,她在那里教授一门为期一个学期的生物化学课程,并为从事生化研究项目的本科生提供指导。她经常教授普通化学和物理化学。在曼荷莲学院的 36 年任期内,她教授过化学的所有子领域,但有机化学的讲座部分除外。她对写作的浓厚兴趣促成了这本教科书的前五版的出版,并取得了巨大的成功。 玛丽来自费城,在印第安纳大学获得博士学位,并在约翰霍普金斯大学从事生物物理化学博士后工作。她的兴趣领域包括研究生物分子的物理化学,具体来说,是蛋白质-核酸相互作用的光谱研究。玛丽喜欢旅行,最近去了澳大利亚和新西兰。经常可以看到她在阿巴拉契亚山道徒步旅行。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
