摘要:本文介绍了一种利用激光添加剂在SS316L基体表面制备95% IN718+5%(75% Cr 2 O 3 + TiO 2 )陶瓷涂层的方法,分析了金属基复合材料的宏观形貌、物相、微观组织、界面、耐磨性和抗拉强度。结果表明,金属基复合材料(MMC)层状复合材料与单一材料相比具有良好的微观硬度和耐磨性。与单一IN718材料的对比分析表明,层状复合材料表现出优异的微观硬度和耐磨性。此外,研究还揭示了材料硬度与耐磨性之间呈正相关的关系,其特点是随着材料硬度的增加,磨损系数和平均磨损量降低。本研究结果为生产高耐磨涂层复合材料提供了一种经济高效、实用的方法。
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
摘要:关于添加石墨烯增强体来改善氧化铝 (Al 2 O 3 ) 陶瓷材料微加工性能的研究仍然太少且不完整,无法满足可持续制造的要求。因此,本研究旨在详细了解石墨烯增强体对提高 Al 2 O 3 基纳米复合材料激光微加工性能的影响。为此,使用高频感应加热工艺制备了高密度 Al 2 O 3 纳米复合材料样品,其中石墨烯纳米片 (GNP) 的含量为 0 wt.%、0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.%。对样品进行激光微加工。之后,研究了 GNP 含量对烧蚀深度/宽度、表面形貌、表面粗糙度和材料去除率的影响。结果表明,纳米复合材料的微加工性能受到 GNP 含量的显著影响。与基础 Al 2 O 3(0 wt.% GNP)相比,所有纳米复合材料的烧蚀深度和材料去除率均有所改善。例如,在更高的扫描速度下,与基础 Al 2 O 3 纳米复合材料相比,GNP 增强样品的烧蚀深度增加了 10 倍。此外,与基础 Al 2 O 3 样品相比,0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.% GNP/Al 2 O 3 纳米复合材料的 MRR 分别增加了 2134%、2391%、2915% 和 2427%。同样,与基础 Al 2 O 3 相比,所有 GNP/Al 2 O 3 纳米复合材料样品的表面粗糙度和表面形貌都有了显著改善。这是因为 GNP 增强体通过增加光吸收率和热导率并减小 Al 2 O 3 纳米复合材料的晶粒尺寸,降低了烧蚀阈值并提高了材料去除效率。在 GNP/Al 2 O 3 纳米复合材料中,0.5 wt.% 和 1 wt.% GNP 样品在大多数激光微加工条件下表现出优异的性能,缺陷最少。总体而言,结果表明,使用基本光纤激光系统(20 瓦)和非常低功耗,可以高质量、高生产率地加工 GNP 增强 Al 2 O 3 纳米复合材料。这项研究表明,在氧化铝陶瓷基材料中添加石墨烯以提高其可加工性具有巨大的潜力。
原子层沉积 (ALD) 已迅速成为半导体行业的重要工具,因为它可以在低温下提供高度保形、可精确调节的涂层,厚度控制在亚纳米级。因此,ALD 是一种将电介质集成到先进光电子器件中的强大方法,并且对于实现新兴的非平面电子设备至关重要。[1] 特别是,可以通过 ALD 在结构化表面上保形生长的非晶态氧化铝 (AlO x ) 广泛用于半导体技术的电介质和化学钝化、[2] 跨硅 (Si) 太阳能电池界面的载流子选择性电荷转移、[3] 非平面场效应晶体管中的栅极电介质、[4] 以及扩散屏障和保护涂层。[5] 当用作 Si 场效应钝化的表面涂层时,ALD AlO x 会引入
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
市场动态 在撰写本文时,澳大利亚能源市场经历了重大混乱,导致价格波动加剧和政策变化。这种混乱可能会影响路线图的实施时间。例如,2022 年 6 月,西澳政府宣布将在 2029 年前关闭国有燃煤发电厂,这代表着不断变化的动态,可能会影响西澳的氧化铝精炼业务。1 此外,澳大利亚在《巴黎协定》中承诺到 2030 年将排放量减少 43%,这可能会导致工业界采取更大、更紧迫的气候行动。2 应密切监测与产能或负荷减少有关的新市场机制,因为它们可能会影响本路线图报告中讨论的技术和选项的经济性。