摘要该网络研讨会回顾了50年以上Cast MMC的进度。介绍了MMC组件在汽车,铁路,空间,计算机硬件和娱乐设备中的当前使用。列出了MMC行业的信息,包括MMC行业的主要生产商Cast MMC的总量。讨论的一些铸造MMC包括铝石墨,铝碳化铝,铝 - 铝铝和铝式灰烬。在包括铸造厂的制造,生产纳米复合材料,功能梯度材料,句法泡沫,自我修复和自润滑复合材料在内的铸造MMC的当前和未来方向。讨论了在Al-Graphite和Al-Graphite-Sic复合材料中用于压缩机,活塞和旋转发动机的轻质自润滑缸衬里的最新进展。提出了金属基质复合材料的未来前景,包括与这些材料的固化处理有关的基本问题。关键字:复合材料;金属铸造;陶瓷;纳米颗粒。参考
通过AlGaN/GaN/InGaN结构实现8 W mm 1,通过N极性GaN HEMT实现94 GHz时8 W mm 1 [3]。这些结果对于商业(5G及以上、汽车雷达)和国防(SATCOM、雷达)应用越来越重要,所有这些应用都在向毫米波频率范围(30 – 300 GHz)推进。为了进一步提高GaN HEMT的优势,我们的研究小组在氮化铝(AlN)缓冲层上引入了HEMT。[4 – 6]通过用AlN替换AlGaN顶部势垒并用AlN替换典型的GaN缓冲层,AlN/GaN/AlN异质结构具有更高的热导率、改善了薄GaN通道(<30nm)的载流子限制,并且与其他传统顶部势垒材料(如AlGaN或InAlN)相比,顶部势垒具有出色的垂直可扩展性。其他研究小组也展示了基于AlN 的器件的有希望的结果,包括基于AlN 衬底的HEMT,在X 波段实现15 W mm 1 [7] ,AlN 缓冲区击穿功率为 5 MV cm 1 [8] 。已经展示了使用AlN 顶部势垒的HEMT,包括GaN HEMT 记录f T = f max 为454/444 GHz,[9 – 11] PAE 为27% ,相关输出功率为1.3 W的W 波段功率放大器,[12] 噪声系数小于2的K a 波段低噪声放大器,[13] 以及40 GHz 时为4.5 W mm 1 [14] 。所有这些器件都基于AlN/GaN/AlGaN 异质结构。 AlN/GaN HEMT 已显示出 Ga 极性 HEMT 在 W 波段的创纪录输出功率,在 94 GHz 时 P out ¼ 4 W mm 1。[15] 除了射频 (RF) HEMT 之外,氮化铝还具有单片集成大电流 GaN/AlN p 型场效应晶体管 (pFET) [16 – 18] 和晶体 AlN 体声波滤波器 [19] 的潜力,这两者都是通过 AlN 缓冲层实现的。SiC 衬底以衬底集成波导 (SIW) 和天线的形式实现了进一步的集成。[20] 这种集成生态系统被称为 AlN 平台,使高功率氮化物互补金属氧化物半导体 (CMOS)、RF 滤波器、单片微波集成电路 (MMIC) 以及 RF 波导和天线共存于一个单片芯片上。[21]
摘要 — 本研究介绍了一种有前途的微加工技术,该技术采用无硅 (SON) 工艺在深度为 1 μ m 的真空腔上形成厚度为 2 μ m 的连续单晶硅膜。利用 SON 工艺,已在 8 英寸硅晶片上展示了高填充因子压电微机械超声换能器 (pMUT) 阵列,腔体宽度范围从 170 μ m 到 38 μ m。器件采用 15% 钪掺杂氮化铝作为 pMUT 的压电层,适用于空气耦合和水耦合应用。空气耦合 pMUT 的峰值位移频率为 0.8 至 1.6 MHz,Q 因子在 120 至 194 之间。水耦合 pMUT 阵列显示,在距离 20 毫米的 DI 水中,针式水听器测量的传输压力范围为 0.4 至 6.9 kPa/V,峰值频率在 5 至 13.4 MHz 之间,分数带宽为 56% 至 36%。本文提出的压电 SON 工艺有可能在低成本、高产量 pMUT 制造中获得关注。
Thermapro™ 隔热分段门厚度为 3 英寸,采用压力注入的无氟聚氨酯泡沫,计算出的 R 值为 25.8。CHT-850 型号采用钢化铝面板,具有 24 号规格的灰泥纹理,内外侧带有 V 型槽。CHT-832 型号采用镀锌钢面板,外侧面为 20 号规格的齐平光滑表面,内侧面为 26 号规格的木纹纹理,带有 V 型槽(内侧面 20 号规格为可选)。CHT-816 型号采用镀锌钢面板,具有 26 号规格的木纹纹理,内外侧带有 V 型槽。分段接头为榫槽接头,可抗风。分段具有 16 号规格钢制端立柱和全垂直钢制背板,可增加强度,并具有坚固的表面硬件连接点。
摘要 — 如果不是因为其有限的 e 31,f 压电系数,氮化铝 (AlN) 为压电微机械超声换能器 (pMUT) 提供了一种与 CMOS 兼容、稳定且无铅的解决方案。尽管已知增加 ScAlN 中的钪 (Sc) 掺杂含量可以提高机电耦合因子 (K t 2 ) 和整体声学性能,但结果在很大程度上取决于 ScAlN 薄膜的应力,尤其是对于空气耦合 pMUT。本研究旨在比较由于 Sc 含量从 20% 增加到 30% 而导致的 pMUT 性能(以 K t 2 为单位)与应力的关系,并考虑其对频率和膜静态变形的影响。结果表明,30% Sc 器件在 -50 MPa 时实现了平均 K t 2 >6%,与基于 PZT 的 pMUT 相当。与 20% Sc 相比,30% Sc 掺杂的 pMUT 传输压力灵敏度提高了 50%,双向灵敏度总体提高了 6 dB。
摘要我们介绍了利用激光多普勒振动仪(LDV)技术的基于氮化铝(ALN)的压电微压超声传感器(PMUT)的非线性。在谐振频率上工作的PMUT将压电层激发到了强非线性区域。观察到非线性现象,例如频移和非平面外位移幅度。使用压电非线性的数学模型用于分析非线性行为,并随后获得了二阶压电系数。在PMUT非线性产生的大约120个谐波下,在相对较高的电压的单色AC信号下实验获得。此外,可以精心控制谐波的数量。开发了三种不同的应用程序来利用声学混合微型系统和射频(RF)领域中的谐波世代。ALN压电非线性的观察和分析可能有益于基于Aln薄片的PMUT的进一步理解。我们认为,生成的谐波可以在信号处理和调制中的多种应用中使用。
本文报告了基于氮化铝(ALSCN)的设计,制造和实验验证,基于下一代内在计算机中的多重元素(MAC)操作。女性乘数利用ALSCN中的铁电偏振开关改变了压电系数(D 31),促进了神经网络中的权重的非挥发性,模拟记忆存储。然后,使用膜的压电参数来更改电容差距进行读数。在100V V P(5MV/cm)的电压下,铁电薄膜可以部分极化,并达到216 µC/cm 2的峰值残余极化。对光学测量位移的实验结果证实了ALSCN Unimorph乘数的操作。最大共振模式位移线性取决于极化和输入电压。这项工作为在内存计算中利用ALSCN的利用提供了基本见解,开放了用于高速,低功率和高精度计算应用程序的新途径。
氮化铝(Algan)是紫外发光光子设备开发的一种材料。基于钒的金属堆栈是与N型Algan形成欧姆接触的流行方法。但是,这些金属堆栈必须退火至600°C以上的温度[6],以形成VN,在此期间,欧姆接触堆栈中的金属可以横向散布和短图案设备。这项研究的目的是确定将V/al/ni/au堆栈的横向扩散最小化的退火条件,并研究退火下的这些堆栈的行为。金属堆栈在8×8毫米硅(SI)块上图案化,并在不同的温度和时间上退火。退火条件的“安全区域”并未确定设备。通过C-TLM结构的扫描电子显微镜(SEM)图像确定扩散量。我们还观察到退火下的Ni的“弹力”可能是由于其高表面能。在以后的研究中,这种观察结果激发了将Ni切换为具有较低表面能量的金属。
摘要 薄膜技术因其多种工业用途而具有吸引力,正在工程学、化学、物理学和材料科学等许多领域得到研究。近年来,随着可再生能源的开发前景,薄膜市场,尤其是光伏领域的研究得到了显著发展,薄膜市场迅速增长。然而,这并不排除其他领域,如半导体集成电路、保护、光学或简单的装饰涂层。上面没有提到的一个领域是新兴的能量收集领域,即捕获和积累来自环境中可用的替代能源的所有能量;第一步是寻找能够将环境能量转换为电能的设备。多年来,人们一直在研究实现这种转换的一种可能的解决方案,那就是压电薄膜,本论文的主题就是压电薄膜的实现和一些初步测量。所采用的技术是生产薄膜最通用的技术之一,即在反应环境中的磁控管配置中进行溅射,该技术快速且能适应各种要求,以获得具有所需特性的薄膜。沉积的压电材料是铝基板上的氮化铝。
氮化铝(ALN)是由于其高热电导率高的3D集成电路(IC)的热管理材料。然而,在低温下生长的Aln薄膜中实现了高温的高温电导率,这对后端(Beol)兼容性构成了显着的挑战。这项研究报告了高温度SIO 2底物在低温(<200°C)下在低温(<200°C)下降低的近300 nm厚的Alnfms溅射,接近90 wm-1 K-1的高平面热电导率。探索了跨平面与平面导热率,质地,晶粒尺寸,氧含量,Al:N原子比和这些纤维的热边界电导之间的相关性。这些发现揭示了晶粒方向对齐在达到高导热率和高热边界电导方面的关键作用。使用X射线差异引入了一种方法来有效地监测Aln薄膜的导热率。这项研究提供了有价值的见解,可以帮助在半导体生产线上实施有效的热管理材料。