毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
这份由标准政策跨部门委员会 (ICSP) 半导体和微电子工作组编写的报告概述了联邦政府半导体和微电子标准活动,并推荐了 ICSP 考虑的标准重点领域和优先事项。报告的“向 ICSP 提出的战略标准重点领域的建议”部分列出了联邦政府目前参与的与半导体和微电子相关的标准制定组织,确定了五个重点领域和优先事项,并确定了未来可能产生影响的差距和机会。概况回顾部分概述了每个参与机构的相关半导体和微电子标准活动,包括其使命、半导体和微电子目标、参与标准制定组织、半导体和微电子重点领域和优先事项以及半导体和微电子差距和机会。国家关键新兴技术标准战略表明了半导体和微电子工作组如何与国家关键新兴技术标准战略保持一致。
5 <车用半导体二哥恩智浦为何忙跟鸿海、英业达造生态系?>,《联合新闻网》,2022年7月21日,https:///udn.com/news/story/7240/6478005。6“自动唯一的孤独点”,SC-IQ:SC-IQ:SEMIConductor Intellionce,3月28日,20223年3月28日,2023,HTTPS:///////////////WW。semiconductorintelligence.com/automotive-lone-brightspot/。
图表 9 : SiC 产业链及代表企业 ............................................................................................................................. 6 图表 10 : 导电型碳化硅衬底 ................................................................................................................................. 6 图表 11 : 半绝缘型碳化硅衬底 ............................................................................................................................. 6 图表 12 : WolfSpeed 公司导电碳化硅衬底演进过程 ........................................................................................... 7 图表 13 : SiC 衬底制作工艺流程 ........................................................................................................................... 8 图表 14 : PVT 法生长碳化硅晶体示意图 ............................................................................................................. 8 图表 15 : 用于制备碳化硅的籽晶 ......................................................................................................................... 8 图表 16 : CMP 过程示意图 ................................................................................................................................... 10 图表 17 : CVD 法制备碳化硅外延工艺流程 ........................................................................................................11 图表 18 : SiC 功率器件种类 ............................................................................................................................... 12 图表 19 : SiC-SBD 与 Si-SBD 比较 ..................................................................................................................... 13 图表 20 : SiC-SBD 正向特性 ............................................................................................................................... 13 图表 21 : SiC-SBD 温度及电流依赖性低 ........................................................................................................... 13 图表 22 : SiC-SBD 具有优异的 TRR 特性 ........................................................................................................... 13 图表 23 : SiC MOSFET 与 Si IGBT 开关损耗对比 .............................................................................................. 14 图表 24 : SiC MOSFET 与 Si IGBT 导通损耗对比 .............................................................................................. 14 图表 25 : SiC MOSFET 体二极管动态特性 ......................................................................................................... 14 图表 26 : N 沟道 SiC IGBT 制备技术图 ............................................................................................................. 15 图表 27 : SiC 行业发展阶段曲线 ....................................................................................................................... 16 图表 28 : SiC 市场规模现状及预测 ................................................................................................................... 17 图表 29 : 新能源汽车包含功率器件分布情况 .................................................................................................. 18 图表 30 : 对车载和非车载的器件要求 .............................................................................................................. 18 图表 31 : 车载 OBC 发展趋势 ............................................................................................................................. 19 图表 32 : 硅基材料功率器件的工作极限 ........................................................................................................... 19 图表 33 : 全球新能源汽车碳化硅 IGBT 市场规模 ............................................................................................ 19 图表 34 : 全球新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 35 : 中国新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 36 : 2020 年全球新能源乘用车车企销量 TOP10( 辆 ) ................................................................................ 21 图表 37 : 2020 年全球新能源乘用车车型销量 TOP10( 辆 ) ................................................................................ 21 图表 38 : 光伏碳化硅器件优越性 ....................................................................................................................... 22 图表 39 : 全球光伏需求预测 ............................................................................................................................... 22 图表 40 : 全球光伏碳化硅 IGBT 市场规模 ........................................................................................................ 23 图表 41 : 全球光伏 IGBT 市场规模 .................................................................................................................... 23 图表 42 : 2015-2021 年中国累计充电桩数量 ..................................................................................................... 24 图表 43 : 2015-2020 年中国车桩比例 ................................................................................................................. 24 图表 44 : 中国新能源汽车充电桩市场规模及预测 ............................................................................................ 25 图表 45 : 全球充电桩碳化硅器件市场规模 ....................................................................................................... 25 图表 46 : 全球轨道交通碳化硅市场规模及预测 ............................................................................................... 26 图表 47 : 2020 年全球轨道交通运营里程 TOP10 .............................................................................................. 26 图表 48 : 轨道交通碳化硅器件占比预测 ........................................................................................................... 27 图表 49 : 全球轨道交通碳化硅技术采用情况 ................................................................................................... 27 图表 50 : 2015-2025 年中国 UPS 市场规模及预测 ............................................................................................ 28 图表 51 : 2015-2021 年中国 UPS 器件类型情况 ................................................................................................ 28 图表 52 : 2011-2020 年全球 UPS 市场规模及预测 ............................................................................................ 29 图表 53 : 2019-2025 年全球 UPS 碳化硅器件市场规模 .................................................................................... 29 图表 54 : 国外碳化硅衬底技术进展 ................................................................................................................... 30 图表 55 : 碳化硅衬底尺寸市场占比演变 ........................................................................................................... 30
PWCR23000049 致瑞昱半导体股份有限公司董事会及股东 前言 我们已审阅瑞昱半导体股份有限公司及其子公司截至2023年3月31日及2022年3月31日的合并资产负债表、截至该日止三个月的合并损益表、股东权益变动表及现金流量表以及合并财务报表附注,包括重要会计政策摘要。 本公司管理层有责任按照金融监督管理委员会核准生效的《证券发行人财务报告编制准则》及国际会计准则第34号《中期财务报告》的规定,编制并公允列报此等合并财务报表。 我们的责任是在审阅基础上对这些合并财务报表发表结论。审阅范围 除下段所述外,本会乃根据中华民国《审阅业务准则第2410号——企业独立核数师审阅财务资料》进行审阅。审阅合并财务报表包括询问(主要询问财务及会计事宜负责人)及应用分析及其他审阅程序。审阅范围远小于审计,因此本会无法保证知悉审计中可能发现的所有重大事项。因此,本会不发表审计意见。 保留结论之依据 如附注4(3)及6(7)所述,若干不重大合并子公司、按权益法核算的投资之合并财务报表及附注13所披露之资料仅以该等子公司及被投资公司编制之报告为准,而该等报告并未经独立核数师审阅。该等子公司总资产分别为新台币 6,258,112 仟元及新台币 5,860,231 仟元,占本公司 102 年度及 102 年度合并总资产的 5.82%及 5.40%,总负债分别为新台币 846,101 仟元及新台币 996,120 仟元,占本公司合并总负债的 1.42%及 1.61%。
芯片之间的数据通信超过了硅从硅的先前芯片架构的性能,并在不到以前的制造步骤中提高能源效率,从而降低了成本。雄心勃勃:根据以前的工业标准,可以在行业的开创性绩效中进行大规模生产。公司的技术和硬件促进了光学芯片到芯片连接,使各种芯片能够像单个芯片一样相互作用。通过克服硅芯片体系结构的当前限制,这项新技术在各个领域(例如更有效的数据中心,生成性和嵌入式AI和自动驾驶)开设了变革性应用程序。
B细胞急性淋巴细胞白血病(B-ALL)的高风险亚型经常与异常激活酪氨酸激酶(TKS)有关。这些包括由BCR-ABL驱动的pH+ B-all,以及类似pH的B-all,它带有其他染色体重排和/或基因突变,这些突变激活TK信号传导。目前,酪氨酸激酶抑制剂(TKI)dasatinib被添加到化学疗法中,作为pH+ B-all的护理标准,并且在临床试验中对TKIS进行了测试,以供PH样B-all。然而,即使在针对驱动癌基因的TKI治疗的细胞中,白血病微环境中的生长因子和营养也可以支持细胞周期和存活。这些刺激在激酶MTOR上汇聚,其升高的活性与预后不良有关。在pH+和pH样B-全部的临床前模型中,mTOR抑制剂强烈增强了TKI的抗白血病效率。尽管在B-all中靶向MTOR的概念性有很强的概念基础,但在临床上测试的第一代MTOR抑制剂(Rapalogs和MTOR激酶抑制剂)尚未显示出明确的治疗窗口。这篇评论的目的是将新的治疗策略引入类似于pH的B-All的管理。我们讨论了靶向MTOR的新方法,以克服先前MTOR抑制剂类别的局限性。一种方法是应用对MTOR复合物-1(MTORC1)选择性的第三代双层抑制剂,并以间歇性给药显示临床前的效率。一种独特的非药物方法是将营养限制用于恶性B-所有细胞中的靶向信号传导和代谢依赖性。这两种新方法可以增强pH样白血病中的TKI效率并提高生存率。
