在当今数字时代,将技术融入教育对于满足学习者多样化的需求变得越来越重要。随着教育机构努力提高学生的参与度和学习成果,游戏化和人工智能 (AI) 等创新策略已成为强大的工具。游戏化将类似游戏的元素融入非游戏环境,旨在提高学习积极性并创造沉浸式学习体验[1]。通过利用积分、徽章和排行榜等游戏机制,教育工作者可以营造一种既有竞争性又有协作性的环境,鼓励学生在学习过程中发挥积极作用。另一方面,人工智能通过分析学生数据并调整内容以满足个人需求来提供个性化的学习体验,从而促进更有针对性的教育方法[2]。
这意味着远程飞行员将需要新的自动化和决策支持系统才能操作飞机,因为他们不能依靠眼睛并从驾驶舱中查看。由于远程飞行员在地面上,因此他们需要一个可靠的通信链接,该链接允许远程飞行员与飞机交互并维护命令和控制。
爱好者建议AI可以改善运输和制造,药品,消费品和军事技术。Rama Chellappa,Guru Madhavan,Ed Schlesinger和John Anderson在PNAS Nexus文章中评估了这些主张,通过探索包括自动驾驶汽车和飞机,AI辅助手术,AI-Loced封闭的Loop Anesthesiology,AI和Robotics,AI和Robotics,AI和AI-AI-AI-Assist assiss foculess focuffe new Matersive focuffeers and Play sash sash serapers and sash nepers nexus文章。
理由:干扰素基因(STING)激活肿瘤中的刺激剂不可避免地增强了吲哚胺2,3-二氧酶(IDO)的活性。然而,IDO会将色氨酸(TRP)转换为kynurenine(Kyn),这可以抑制对TRP敏感的T细胞的功能活性并诱导免疫抑制作用。很少探索用于刺激性激动剂和IDO抑制剂组合的有效纳米药物。方法:将二嵌段聚合物多生产与IDO抑制剂1-甲基丁字传(1-MT)合成,该二烷基键(1-MT)由硫代键和光敏剂5,10,15,15,20-四磷酸苯基孢子蛋白(TPP)以及氢孢子骨(TPP)以及氢孢子骨(4-METH)的替代(4-METH)替代(4-METH)(ER) - METHERMETERMESTRIMSILIM级别(ER)磺酰胺在亲水块中。在水溶液中自组装后,可以以高载荷效率形成胶束加载刺激性激动剂SR-717(SR@et-PMT)。细胞内在化后,胶束可以靶向ER。在暴露于650 nm的光照射后,可以生成活性氧(ROS)以打破硫代键并将胶束解离以释放1-MT和Sting Agonist。伴随着光动力疗法(PDT),同时实现了STING激活和IDO抑制作用。结果:体外观察揭示了PDT效应,ER靶向和光活化的药物释放。体内动物模型的结果表明,可光活化的免疫调节剂多生产胶束表现出极好的肿瘤积累和有效的免疫激活能力可抑制实体瘤。PDT效应,STING激活和IDO抑制作用协同激活体内抗肿瘤免疫。最后,由于有效的免疫治疗疗效,SR@et-PMT可以达到88%的实体瘤抑制率。结论:可将光活化的免疫调节剂多塑料成功准备好同时提供刺痛激动剂和IDO抑制剂,这代表了一种有希望的纳米医学,用于协同抗体免疫的时空激活。
常规的单连接太阳能电池具有33%的理论效率限制,而多开关太阳能电池(MJSC)当前是唯一克服该限制的技术。热载体太阳能电池(HCSC)的演示是另一种依赖于收获光生成的携带者的动能的高耐高率方法,由于缓解携带者的热力化的困难。在这封信中,我们通过引入热载体太阳能电池(HCMJSC),这两个概念的协同作用,这是一个带有薄热载体顶交界处的MJSC。使用详细的平衡模型,我们将不同设备的效率与三个参数的函数进行比较:顶部和底部连接的带隙,顶部和底部连接的带隙,顶部和底部连接的效率,以及有效的热量系数,这封装了热化和光捕获的信息。除了允许比MJSC的材料组合范围更广泛,我们还表明,HCMJSC可以达到比HCSC较大的热化系数高的MJSC的效率。因此,HCMJSC可以为开发基于热载体的高效设备提供首选的途径。
AI驱动的教育工具预计将在未来几年影响全球超过20亿学习者,以前所未有的方式改变STEM和非茎学科(Louly,2024; Sandhu等,2024;世界经济论坛,2024年)。人工智能(AI)正在通过个性化的辅导,实时反馈和自适应学习经验彻底改变教育(Akavova等,2023)。AI使教师能够根据学生的需求制定个性化的发展计划。它对诸如批判性思维,情感智力和道德推理等智力任务的影响是一个有争议的话题(Çela等,2024)。对驱动的工具的更大依赖性是对表面学习的关注,并且与复杂的问题解决和辩论最少的参与度(çela等,2024)。虽然AI在所有受试者中都增强了教育,但在STEM和非茎领域之间,它确实如此不均,尤其是在与基于结构化的基于逻辑的学习与解释性,抽象推理的互动(Nagaraj等,2023; Singer等,2023)。在STEM教育中,AI的分析和结构化逻辑性质在解决问题,模拟和复杂计算的自动化方面提供了极大的好处。然而,非茎领域,例如人文和社会科学,需要更多的解释性,道德和创造性的参与,而AI不太可能提供。本文探讨了这些差异,同时倡导AI的均匀整合,以增强而不是代替人类的教学。
mll重排(MLL R)白血病与预后不良和对常规疗法的反应有限有关。此外,化学疗法会导致严重的侧面影响,并严重受到免疫系统的损害。因此,必须识别新型治疗策略。最近,我们通过使用簇状的定期插入的短篇小学重复序列(CRISPR)/cas9在CD34 +细胞中诱导CD34 +细胞中的染色体重排,开发了人类MLL RR白血病模型。该MLL R模型的真实性模仿患者白血病细胞,可用作新型治疗策略的平台。我们模型的 RNA测序揭示了MYC是促进造成发生的最重要的关键驱动因素之一。 然而,在临床试验中,BRD4抑制剂JQ-1导致间接阻断MYC途径仅显示适度的活动。 我们和其他人以前报道说,靶向MAT2A或PRMT5的表观遗传药物促进了MLL R细胞中的细胞死亡。 因此,我们将这些药物与JQ-1结合使用,从而增强了抗白血病效应。 更重要的是,我们发现T,NK和INKT细胞的激活,免疫调节细胞因子的释放以及抑制剂治疗后PD-1/PD-L1轴的下调导致细胞毒性提高。 总而言之,MYC和MAT2A或PRMT5的抑制作用驱动了MLL RL白血病的强大协同抗白血病活性。 此外,在组合抑制剂治疗后同时激活免疫系统,从而进一步提高了治疗效率。RNA测序揭示了MYC是促进造成发生的最重要的关键驱动因素之一。然而,在临床试验中,BRD4抑制剂JQ-1导致间接阻断MYC途径仅显示适度的活动。我们和其他人以前报道说,靶向MAT2A或PRMT5的表观遗传药物促进了MLL R细胞中的细胞死亡。因此,我们将这些药物与JQ-1结合使用,从而增强了抗白血病效应。更重要的是,我们发现T,NK和INKT细胞的激活,免疫调节细胞因子的释放以及抑制剂治疗后PD-1/PD-L1轴的下调导致细胞毒性提高。总而言之,MYC和MAT2A或PRMT5的抑制作用驱动了MLL RL白血病的强大协同抗白血病活性。此外,在组合抑制剂治疗后同时激活免疫系统,从而进一步提高了治疗效率。
抽象无线传感器网络(WSN)已成为未来最有前途的技术之一。这是通过技术的进步和小型,廉价和智能传感器的可用性来实现的,从而产生了成本效率且易于部署的WSN。但是,研究人员必须采取各种挑战,以促进现实世界中WSN技术的广泛部署。在本调查中,我们概述了无线传感器网络及其应用领域,包括为了进一步推动技术应解决的挑战。然后,我们回顾了WSN的最新技术和测试床。最后,我们确定了几个未来需要研究的开放研究问题。我们的调查与现有调查不同,因为我们专注于无线传感器网络技术的最新发展。我们回顾了领先的研究项目,标准和技术以及平台。此外,我们重点介绍了WSN研究中最近的一种现象,该现象是探索传感器网络与其他技术之间的协同作用,并解释这如何帮助传感器网络实现其全部潜力。本文打算通过对最近的发展进行全面调查来帮助新的研究人员进入WSN领域。
摘要。循环经济(CE)最近被认为是工业公司最有前途的可持续策略之一,旨在减少资源消费,扩大资源生命周期并在生命周期阶段进行再循环。从线性经济到通函的过渡需要公司的内部重组,而不必限制对产品生命周期管理的关注,还考虑如何适当管理内部资产,例如物理资产,例如机器和社交,例如工作力量。的确,本工作的目的是调查CE在工业资产管理(AM)中的采用,从而着重于物理资产。进行了一个系统的文献综述,其目标是两个方面的目标:首先,要设想CE与AM之间的协同作用,其次是确定现有的研究差距。通过这篇综述,有可能注意这两种理论的共同生命周期取向,但在AM中仍然采用了它的胚胎,以实现循环目的。的确,从CE角度来看,AM理论的主要重点是维护活动在其生命阶段中延长资产生命周期的作用,而在工业资产生命开始时,CE采用仍在落后。这限制了生命周期取向,这将提高工业公司的可持续性。为了遇到决策者的期望,应进一步整合这两种理论。
(续)指示统计上显着的差异(两尾t检验)。c和d,用媒介物(车辆)或20μmol/l d16处理的MDAH-2774细胞流式细胞仪细胞周期分析过夜。c,用PI染色的细胞的定量表明g 1-,s-和g 2 – m相间的细胞分布百分比。d,代表性pi files。*,p <0.05; **,p <0.01(两尾t检验,n = 3个生物学重复)。e,H1299稳定的殖民地形成