自旋大厅和Rashba-Edelstein效应是由于自旋 - 轨道耦合而引起的旋转转换现象(SOC),随着快速管理和低消费的途径的途径越来越引起人们的兴趣,因此在旋转设备中迅速管理和处理大量数据的储存和处理。具有大SOC的材料,例如重金属(HMS),以进行大型旋转转换。最近,已经提出了将石墨烯(GR)与大型SOC层接近的使用,这是一种有效且可调的自旋传输通道。在这里,我们通过热自旋测量值探索了CO和HM之间的石墨烯单层及其界面自旋传输性能的作用。已经在蓝宝石晶体上生长的外观IR(111)/CO(111)结构上制备了GR/HM(PT和TA)堆栈,其中自旋检测器(即顶部HM)和自旋注射器(即CO,CO)都在受控条件和清洁和清洁和锋利的互动中生长出来。我们发现GR单层从底部CO层保留了注入HM的自旋电流。通过检测旋转seebeck和界面贡献之和的净减少,这是由于GR的存在而独立于所使用的HM的自旋霍尔角符号而观察到的。
模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
开发的高速模糊推理机器学习设备的主要目的是促进系统学习功能并改善计算性能。这是通过将训练单元的反馈添加到Defuzzification单元来实现的,该单元允许训练模糊逻辑设备[7],[8]。还排除了Defuzzification单元中的某些操作,这将归化过程的计算性能时间降低至180 ns。基于区域比率方法的单层解体机的高速模糊逻辑推理机器学习设备的结果是,在模糊逻辑系统的输出下,输入数据将输入数据的生成和转换为单个指定的CRISP值。这种类型的设备可用于图像分类或热电偶控制任务[9],[10]。此外,开发了基于面积比方法的神经模糊学习的本体论模型:
b“氧扩散,在整个共培养室中产生氧梯度。含有10%氧气的基底外侧气流通过气体入口进入,并用磁性搅拌器均匀地通过不对称的共培养室扩散。排气通过气体插座排放,完成了系统的气流(Fofanova等,2019)。该图是使用生物者创建的。(b)不对称共培养室的物理图片。(c)在将FITC-DEXTRAN添加到包含Tigk单层的Transwells的顶端室后,在24小时内比较了基底外侧室内FITC-脱骨的荧光强度。在常规氧培养条件下未分化(阴性对照)和分化的Tigks(称为\ XE2 \ X80 \ X9CNORMOXIC \ XE2 \ X80 \ X9D)与在不对称培养条件下的分化Tigk(称为AS AS AS) \ xe2 \ x80 \ x9casymmetric \ xe2 \ x80 \ x9d)。对于每种条件,减去空白培养基的背景荧光强度。未分化的TIGK单层在正常氧状态下培养,然后切换为包含Ca 2+的分化培养基,用作负面对照。(N.S.:p> 0.05,***:p <0.001,n = 2技术重复,n = 3个生物重复序列)。(e)在常氧和不对称培养条件下培养的TIGK单层中细胞活力的比较。热处理细胞是阴性对照(N.S.:p> 0.05,**:p <0.01,n = 3,n = 3)。(d)Transwell插入物中的Tigk单层的形态在正常氧化条件下维持在细胞培养培养基中,或在不对称的共培养室中培养24小时。已知胶原蛋白由于胶原纤维的存在而影响明亮的田间成像,与未涂层的表面相比,该胶原纤维可能会掩盖所观察到的细胞或结构的细节(Hashimoto等,2020)。
我们介绍了使用各种实现技术和语言构建的裸机服务器的验证,该技术根据机器代码,网络数据包和椭圆形曲线密码学的数学规范来针对全系统输入输出规范。我们在整个堆栈中使用了非常不同的形式性技术,范围从计算机代数,符号执行和验证条件生成到对功能程序的交互式验证,包括用于C类和功能性语言的编译器。所有这些组件规格和特定于领域的推理技术都是针对COQ证明助手中常见的基础定义和合理的。连接这些组件是一种基于功能程序和简单对象的断言,无所不知的程序执行和基本分离逻辑,用于内存布局。此设计使我们能够将组件以最高级别的正确性定理汇总在一起,而无需理解或信任内部接口和工具而可以进行审核。我们的案例研究是一款简单的加密服务器,用于通过公开验证的网络消息翻转一些状态,其证明显示了总功能正确性,包括内存使用方面的静态界限。本文还描述了我们使用的特定验证工具的经验,以及对我们经历的工具和任务组合之间经历的生产力差异的原因的详细分析。
国际标准化组织提供了各种术语来解释石墨烯及其在2017年的工作,以避免遵守查询中的定义。 div>“基于ISO的术语”可以描述如下:•石墨烯:一层碳原子。 div>也称为牙石墨烯或单层石墨烯或两层石墨烯:两个定义明确的重叠石墨烯层; •低层石墨烯:3-10个定义明确的重叠石墨烯层。 div>•石墨纳米层:侧尺寸〜100 nm至100微米,并从1到3 nm厚的石墨烯。 div>
1引言具有分层结构的二维材料,例如石墨烯和过渡金属二分法元素正在发展的技术,并且在计算和电路制造工业中的数字应用1-3。在具有修改功能特性的半导体中将这些材料从笨重到单层的限制。单层材料对研究人员来说是有吸引力的候选人。诸如MOS 2和WS 2之类的大量材料具有间接的带结构,而其单层是直接的,宽4-7。通过应变工程,结构和电气行为可以调整。电子迁移率和有效质量是电子设备的关键工具。散装或2D材料的外观外观在实验中产生很多菌株。这些发现表明了新的物理和化学能力包括电气,光学和磁性8。第一原理计算揭示了大小,形状和声子之间的联系
单个原子缺陷是关注主机量子状态的突出窗口,因为来自主机状态的集体响应是在缺陷周围作为局部状态出现的。费米液体中的弗里德尔振荡和围绕云是典型的例子。然而,对于量子自旋液体(QSL)的情况是巨大的,这是一种具有分数化准粒子的异国情调状态,造成量子纠缠的深远影响而产生的拓扑顺序。由于分数化准粒子的电荷中立性和QSL的绝缘性质,阐明基本的局部电子特性一直在挑战。在这里,使用光谱成像扫描隧道显微镜,我们报告了金属底物上最有希望的Kitaev QSL候选者单层α -rucl 3的原子解析图像。我们发现在绝缘子表现出的量子干扰是围绕具有特征性偏见依赖性的缺陷的局部状态密度的不稳定和衰减的空间振荡。振荡与本质上的任何已知空间结构不同,并且在其他Mott绝缘子中不存在,这意味着它是一种与α -rucl 3独有的激发有关的异国情调振荡。数值模拟表明,可以通过假设Kitaev QSL的巡游主要植物散布在Majoraana Fermi表面上,可以通过假设射击振荡来复制。振荡提供了一种新的方法,可以通过局部响应来探索Kitaev QSL,以针对金属中的Friedel振荡等缺陷。
2D金属有机框架(2D MOF)的设计利用了简单有机配体与不同的过渡金属(TM)中心的各种电子性质的组合。协调键的强大方向性质是在这些体系结构中TM核的结构稳定性和周期排列的基础。在这里,有直接而清晰的证据表明,2D MOF表现出具有混合特性和金属核中具有杂种特性和不同磁性特性的有趣的能量分散性电子带,这是由TM电子水平与有机配体之间的相互作用引起的。重要的是,提出了一种通过利用不同TMS的电子结构来有效调整2D MOF的电子结构和金属芯的磁性的方法。因此,所选TM的电离潜在特征,尤其是3D状态的相对能量位置和对称性,可用于在特定的金属有机框架中进行战略性地设计频段。这些发现不仅为2D MOF中的频带结构工程提供了理由,而且还为高级材料设计提供了有希望的机会。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
