摘要:利用在1550 nm处产生的EPR纠缠,在单个光纤信道上实验实现了实时确定性量子隐形传态。利用1342 nm激光束实时传输经典信息,同时作为同步光束,实现量子信息与经典信息的同步。通过优化在Alice站点建立的用于操纵EPR纠缠光束的有耗通道的传输效率,实验研究了保真度对光纤信道传输距离的依赖关系。确定性量子隐形传态的最大传输距离为10 km,保真度为0.51±0.01,高于经典隐形传态极限1/2。该工作为基于确定性量子隐形传态在光纤信道上建立城域量子网络提供了一种可行方案。
摘要 提出使用具有空间纹理偏振的太赫兹 (THz) 矢量光束来控制量子点中两个相互作用电子的自旋和空间分布。我们从理论上研究了自旋和电荷电流密度的时空演化,并通过计算并发度量化了纠缠行为。结果表明,这两个方面都可以由驱动场的参数在皮秒 (ps) 时间尺度上有效控制。通过分析两种具有不同电子 g 因子的不同材料 GaAs 和 InGaAs,我们研究了 g 因子与产生有效能级间跃迁所需的自旋轨道耦合类型之间的关系。这些结果对于将量子点应用为量子信息技术中的基本纳米级硬件元素以及根据需要快速产生适当的自旋和电荷电流很有用。
量子互联网连接远程量子处理器,这些处理器需要通过光子通道进行长距离交互和交换量子信号。然而,这些量子节点的工作波长范围并不适合长距离传输。因此,量子波长转换为电信波段对于基于光纤的长距离量子网络至关重要。在这里,我们提出了使用连续变量量子隐形传态的单光子偏振量子比特波长转换器,它可以有效地在近红外(适合与原子量子节点交互的 780/795 nm)和电信波长(适合长距离传输的 1300-1500 nm)之间转换量子比特。隐形传态使用纠缠光子场(即非简并双模压缩态),可以通过铷原子气体中的四波混合产生,使用原子跃迁的菱形配置。纠缠场可以以两个正交偏振态发射,相对相位锁定,特别适合与单光子偏振量子比特接口。我们的工作可能为实现长距离量子网络铺平道路。
Bell态是实现量子信息任务的最基本资源,在量子力学中具有非常独特的地位,而利用轨道角动量(OAM)编码单光子Bell态可以实现高维Hilbert空间,这对于量子信息领域至关重要。本文设计了一种基于Sagnac干涉仪的单光子OAM Bell态演化装置,可以将输入Bell态与输出态一一对应。此外,我们还发展了一种单光子单像素成像(SPI)技术来获取输出态的干涉图像,该技术在提高空间分辨率的同时减少了采集时间。结果表明,通过对比干涉图像的差异可以完全识别单光子OAM Bell态,创新性地将SPI技术应用于单光子OAM Bell态的识别。这表明SPI技术有效促进了基于OAM的量子信息研究,而基于OAM的量子信息又为SPI技术提供了明确的应用场景。
引言量子协议领域的研究已经得到了广泛的开展。在量子密码学领域,Ekert [1]使用两个EPR量子比特(Einstein、Podolsky、Rosen)的状态作为状态紧密性测试器,并在Bennet通信协议[2]中通过单粒子和双粒子算子共享这个EPR。1993年,Bennet等人[3]首次提出了通过EPR通道进行一个量子比特状态的量子隐形传态的理论协议。量子隐形传态是通过划分量子纠缠态和涉及一些非局部测量的经典态,在发送者(Alice)和接收者(Bob)之间的不同地方发送任意数量的无法识别的量子比特的过程。一般来说,Alice中的非局部测量采用射影测量,而Bob中的非局部测量则是幺正操作。还有一些协议,其非局部测量是通过 Aharanov 和 Albert [4] 的方法实现的,Kim 等人 [5] 的实验和 Cardoso 等人 [6] 的工作中实现了非线性相互作用,这些相互作用利用了状态源腔和通道源之间的共振。对于任意两个比特的纠缠态,量子通道的选择是通过 Schmidt 分解测试 [23] 获得的,而在多立方体中,则是通过其约化密度矩阵的秩值的组合 [24] 获得的。