6。跨学科的整合与协作:整合来自不同学科的见解,包括化学,生物学,材料科学和环境科学,对于应对胺研究中的复杂挑战至关重要。在不同领域具有专业知识的研究人员之间的合作努力可以促进为跨学科问题的整体解决方案的发展。但是,跨学科的有效合作和沟通仍然是一个挑战,需要努力弥合学科界限并促进解决这些问题的知识交流,需要跨学科的研究人员的合作努力,综合和表征的创新方法,以及对可持续性和社会影响的承诺。通过应对这些挑战,研究人员可以提高我们对胺的理解,并利用他们满足关键科学和社会需求的潜力。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月26日发布。 https://doi.org/10.1101/2024.08.24.609500 doi:Biorxiv Preprint
为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
微生物驱动全球碳循环1,并可以与宿主生物体建立象征关系,从而影响其健康,衰老和行为2 - 6。微生物种群通过改变可用的代谢物池和专门的小分子7、8的产生与不同的生态系统相互作用。这些群落的巨大遗传潜力被人相关的微型iSms举例说明,该微生物ISM的编码是人类基因组9、10的大约100倍。然而,这种代谢潜力在现代的未纳入代谢组学实验中仍未被反射,其中通常<1%的注释分子可以归类为微生物。这个问题特别影响质谱(MS)基于非靶向代谢组学,这是一种通过微生物11所产生或修饰的分子11的常见技术,该技术在复杂生物学样品的光谱注释中著名地挣扎。这是因为大多数光谱参考文献都偏向于原代代谢产物,药物或工业化学品的市售或以其他方式的标准。即使在注释代谢物时,也需要进行广泛的文献搜索,以了解这些分子是否具有微生物起源并识别各自的微生物生产者。公共数据基础,例如Kegg 12,Mimedb 13,Npatlas 14和Lotus 15,可以帮助进行这种解释,但它们大部分限于已建立的,很大程度上基因组所涉及的代谢模型或完全表征和发行的分子结构。此外,虽然旨在从机械上开发了旨在询问肠道微生物组的靶向代谢组学努力16,但它们仅着眼于相对较少的商业可用的微生物分子。因此,尽管MS参考文库不断扩大,但大多数微生物化学空间仍然未知。为了填补这一空白,我们已经开发了Microbemasst(https://masst.gnps2.org/microbemasst/),这是一种利用的搜索工具
超敏光谱是中红外(MIR)技术的重要组成部分。然而,miR探测器的缺点在单光子水平上对稳健的miR光谱构成了挑战。我们提出了miR单光子频率上转换光谱非局部将miR信息映射到时间do-main。来自自发参数下调的宽带miR光子频率向上转换为具有量子相关性保存的近红外带。通过纤维的组延迟,在1.18微米的带宽为2.76至3.94微米内的miR光谱信息被成功地投影到相关光子对的到达时间。在每秒6.4×10 6光子的条件下,使用单像素检测器证明了具有单光子敏感性的聚合物的传输光谱。开发方法绕过扫描和频率选择不稳定性,它在不断发展的环境中固有的兼容性和各种波长的可伸缩性而引人注目。由于其高灵敏度和鲁棒性,生化样品的表征和量子系统的弱测量值可能是预见的。
泳池水中的氯与有机化合物发生反应,形成消毒副产物 (DBP),例如单氯胺、二氯胺和三氯胺。氯胺具有挥发性,会释放气体并浓缩在水/空气界面上,游泳者会在此呼吸,导致眼睛灼痛和呼吸问题,从而影响游泳表现和长期健康。氯胺会进一步扩散到游泳池大厅,造成腐蚀和令人讨厌的“氯气味”。
自体干细胞移植后多发性骨髓瘤(MM)患者(MM)的最佳lenalidomide(LEN)维持持续时间尚不清楚。我们对2005 - 2021年之间接受过预期自动关联的成年MM患者进行了回顾性单中心分析,然后进行了单药LEN维护。1167例患者的中位年龄为61.4岁(25.4-82.3)年,而高风险的染色体异常为19%。中位数维护时间为22.3(范围0.03-139.6)月。中位随访后47.9(范围2.9 - 171.7)月后,整个队列的中位PFS和OS分别为56.6(95%CI 48.2 - 61.4 )月和111.3(95%CI 101.7 - 121.5)月。在MVA中,高风险的细胞遗传学与较差的PFS(HR 1.91)和OS(HR 1.73)有关(P <0.001
人工智能正在革新蛋白质结构预测,为药物设计提供了前所未有的机会。为了评估对配体发现的潜在影响,我们使用Alphafold机器学习方法和传统同源性建模产生的蛋白质结构比较了虚拟筛选。将超过1600万种化合物停靠到痕量胺相关受体1(TAAR1)的模型,这是一种未知结构的G蛋白 - 偶联受体,也是治疗神经精神疾病的靶标。分别来自Alphafold和同源模型筛选的30和32个高度排名化合物。中有25个是TAAR1激动剂,其功能范围为12至0.03μM。AlphaFold屏幕的产生的命中率(60%)比同源性模型高两倍以上,并且发现了最有效的前身。具有有希望的选择性曲线和类似药物的特性的TAAR1激动剂在野生型中显示出生理和抗精神病药样作用,但在TAAR1敲除小鼠中却没有。这些结果表明,αFOLD结构可以加速药物发现。