它使用Jurkat T细胞(两者IC 50 = 0.05 µM)抑制记者测定中的NF-κB-和AP-1介导的转录,并且在Jurkat T细胞中抑制了IL-2和IL-8水平(两者IC 50 = 0.03 µm)。SP100030(每天20 mg/kg持续三天)可将嗜酸性粒细胞和T细胞浸润成支气管肺泡灌洗液(BALF),并降低卵巢蛋白 - 敏感性大鼠ASTHMA模型中分离的肺组织中AP-1和磷酸化的AP-1水平。2,它以每天每天1 mg/kg的剂量给药时,可防止骨骼肌,棕色脂肪组织,脾脏,肾脏和心脏肿块减少。3 SP100030(每天10 mg/kg)抑制博来霉素诱导的体重降低,湿干性肺重量比增加,并增加肺蛋白质蛋白质,脊髓过氧化物酶(MPO),弹性酶,胶原蛋白酶,胶原蛋白和IL-1β水平的肺纤维纤维纤维纤维纤维纤维化小鼠模型中的IL-1β水平。4
在真核生物中,双链断裂(DSB)可以通过同源重组(HR)或非同源最终连接(NHEJ)修复。在体细胞中,人力资源非常不具体。因此,绝大多数DSB通过NHEJ的两种不同途径进行修复。经典(CNHEJ)途径取决于het-rodimer ku70/ku80,而聚合酶theta(polq)(polq)是替代(anhej)途径的核心。令人惊讶的是,即使两种途径受损,拟南芥植物也是可行的。但是,它们表现出严重的生长迟缓和生育能力降低。有丝分裂过轴酶的分析表明,双突变体的特征是由于DSB修复缺陷而导致染色体碎片的急剧增加。与单个突变体相反,发现双突变体对诱导DSB的基因毒素博来霉素高度敏感。因此,这两种途径都可以在DSB修复中相互补充。我们推测,在没有NHEJ途径的情况下,HR可能会增强。这对于基因靶向(GT)特别有吸引力,其中使用同源模板引入了预定的变化。不期望的是,与野生型植物相比,POLQ单突变体和双突变体的GT频率明显较低。因此,我们能够证明消除两种NHEJ途径并不对农业介导的GT构成有吸引力的方法。但是,我们的结果清楚地表明,CNHEJ的损失导致GT频率的增加,这对于使用Planta GT策略的实践应用特别有吸引力。
DNA 靶向药物可能会损伤 DNA 或染色质。许多抗癌药物会同时损伤 DNA 和染色质,因此很难理解它们的作用机制。我们使用导致 DNA 断裂但不改变核小体结构的分子(博来霉素)或使核小体不稳定但不损伤 DNA 的分子(curaxin),研究了 DNA 或染色质损伤对正常细胞和肿瘤细胞的影响。正如预期的那样,DNA 损伤导致 p53 依赖性生长停滞,随后衰老。染色质损伤导致的 p53 积累高于 DNA 损伤;然而,生长停滞与 p53 无关,不会导致衰老。染色质损伤以 p53 非依赖性方式激活了多个基因的转录,包括经典的 p53 靶标。尽管这些基因在基础条件下表达不高,但它们具有围绕转录起始位点 (TSS) 的染色质组织,这是大多数高表达基因的特征,并且 RNA 聚合酶暂停水平最高。我们假设这些基因 TSS 周围的核小体对染色质损伤最为敏感。因此,curaxin 处理后核小体丢失将使转录无需序列特异性转录因子的协助即可进行。我们证实了这一假设,结果显示 curaxin 处理后这些基因 TSS 周围的核小体丢失较多,染色质损伤剂而非 DNA 损伤剂可激活 p53 缺陷细胞中的 p53 特异性报告基因。
摘要:最近的报告表明,微管在双链DNA断裂修复中起着作用。我们在这里研究了微管相关蛋白TAU在放射和化学疗法中的作用。明显地,乳腺癌细胞系中TAU的表达降低导致阿霉素或X射线治疗后小鼠 - 六边形乳腺肿瘤体积的显着降低。此外,tau的敲门损害了经典的非同源最终结合途径,并导致对博来霉素和X射线的细胞反应得到改善。研究了Tau保护作用的机制,我们发现DNA中对双链断裂的反应的主要介体之一,肿瘤抑制剂p53结合蛋白1(53BP1)是在细胞质中隔离的,这是Tau下调的结果。我们证明了TAU允许53BP1通过伴侣伴侣微管蛋白传播来响应DNA损伤而转移到核。此外,TAU敲低化学敏化的癌细胞对形成DNA加合物(例如顺铂和奥沙利铂)的药物,并进一步提出TAU在调节DNA修复蛋白的核traffiffiffinfim tau中的一般作用。总的来说,这些结果表明,癌细胞中的tau表达可能是对响应DNA损害抗癌药的反应的分子标记。临床靶向tau可以使肿瘤对DNA损害治疗敏感。
传统药物及其活性成分以及一些天然产物和衍生类似物已被用于治疗多种疾病,包括癌症。在这些化合物中,细胞毒性剂如博来霉素、紫杉醇和长春新碱可阻断癌细胞生长所需的基本途径和基因,这些药物具有多种临床应用。膳食酚类化合物(包括黄酮类化合物和相关化合物)具有多种健康益处,然而,大多数在临床前研究中显示出良好抗癌活性的个体膳食化合物和其他天然产物的临床效果极小,对癌症尤其如此。由于药代动力学考虑和摄取有限(例如姜黄素),许多化合物在临床试验中表现不佳,这些问题是可以解决的。黄酮类化合物和许多其他天然产物衍生的抗癌化合物的临床效果也可以通过更有针对性的方法得到增强。这将包括识别特定癌症中的显著反应/基因或靶点,然后确定最佳化合物。在这篇评论中,我讨论了有限数量的靶标,包括非致癌基因成瘾基因,例如 Sp 转录因子、活性氧 (ROS) 或孤儿核受体 4A (NR4A) 亚家族。因此,对这些反应最有效的化合物只能用于治疗 ROS 诱导或高表达靶标(例如 Sp1 或 NR4A 亚家族成员)的患者。基于机制的精准医疗方法应能提高饮食和相关天然产品作为抗癌剂的临床疗效,并减少某些联合疗法的毒副作用。
肿瘤疾病代表发达国家死亡率的主要原因。许多药理方法用于治疗肿瘤,化疗是全身治疗的最常用方法。用于治疗肿瘤性疾病的植物衍生的细胞抑制药物包括:细胞毒性抗生素,podophylllotoxin衍生物,抗微管剂,甲虫类衍生物和烯烃。蒽环类药物:阿霉素或米托甘氨酸,以及其他抗生素,例如博来霉素,dactinomycin和sitomycin,在植物来源的抗生素中非常重要。上述药物主要用于血液学恶性肿瘤和实体瘤。施用衍生物的植物衍生化合物的例子是治疗一些肿瘤的毒素是源自podophylyl-lum pelatum和podophyllum emodi的podophyllotoxin,以及从camptotheca acuminata中分离出来的camptothe。通过干扰有丝分裂旋转的活性,或更准确地通过停止有丝分裂的不正确过程来抑制ma的生长,这适用于Vinca生物碱,紫杉烷和Epothilones。与纺锤体的微管相互作用最常用于治疗诸如卵巢癌,乳腺癌和霍奇金淋巴瘤等肿瘤。天冬酰胺酶是一种用于急性淋巴细胞白血病的化学症和其他恶性肿瘤的必不可少的基本酶,例如非霍奇金淋巴瘤。由于其对健康细胞的毒性频繁毒性,因此细胞抑制剂的应用受到了极大的限制。关键词:化学疗法;细胞抑制药物;癌症;医院药房尽管如此,上述植物来源的化合物成功地用于治疗许多恶性肿瘤。此外,关于细胞抑制药物的全面临床试验有助于其特征,抗肿瘤潜力和化学疗法的安全性。
导致细胞社会的变化。为了克服这一局限性,在这个项目中,我们通过使用基于BD Rhapsody的新型单细胞RNA-SEQ(SCRNA-SEQ)方法来分析单细胞水平的发炎组织 - tas-seq。(Shichino等人2022,Commun。 Biol .1:602)。 就基因敏感性,检测细胞群体的检测和细胞 - 细胞相互作用的敏感性而言, tas-seq比其他主要的SCRNA-SEQ技术优于其他主要的SCRNA-SEQ技术。 通过使用这项技术,我们分析了二氧化硅诱导的肺纤维化模型,我们发现C1Q是肺间隙巨噬细胞的特定标记,C1Q充当了硅胶诱导的肺纤维化中的纤维化介质(Ogawa等人。 2022,生物化学。 生物。 res。 社区。 599:113-119)。 此外,我们开发了Tas-Seq,Tas-Seq2的更新版本,其中基因检测灵敏度及其实用性得到了增强。 tas-seq2不仅可以应用于基于纳米韦尔的系统(例如 bd rhapsody),但也要基于液滴的系统(例如 10x铬)和基于板的系统(例如 smart-seq2)。 tas-seq2在小鼠脾脏和人类冷冻的PBMC样品中,比原始10x Chroumimum V3(10x Tas-Seq2)的基因比原始10x chroumimus V3(10x Tas-Seq2)高1.5-2倍。 现在,我们正在开发用于高分辨率空间转录组学立体声的Tas-Seq2,用于分析固定细胞,并将其细胞吞吐量增加10-100倍。 此外,我们正在收集人间质肺病患者,纤维化大鼠肺和鼠2022,Commun。Biol .1:602)。tas-seq比其他主要的SCRNA-SEQ技术优于其他主要的SCRNA-SEQ技术。通过使用这项技术,我们分析了二氧化硅诱导的肺纤维化模型,我们发现C1Q是肺间隙巨噬细胞的特定标记,C1Q充当了硅胶诱导的肺纤维化中的纤维化介质(Ogawa等人。2022,生物化学。生物。res。社区。599:113-119)。 此外,我们开发了Tas-Seq,Tas-Seq2的更新版本,其中基因检测灵敏度及其实用性得到了增强。 tas-seq2不仅可以应用于基于纳米韦尔的系统(例如 bd rhapsody),但也要基于液滴的系统(例如 10x铬)和基于板的系统(例如 smart-seq2)。 tas-seq2在小鼠脾脏和人类冷冻的PBMC样品中,比原始10x Chroumimum V3(10x Tas-Seq2)的基因比原始10x chroumimus V3(10x Tas-Seq2)高1.5-2倍。 现在,我们正在开发用于高分辨率空间转录组学立体声的Tas-Seq2,用于分析固定细胞,并将其细胞吞吐量增加10-100倍。 此外,我们正在收集人间质肺病患者,纤维化大鼠肺和鼠599:113-119)。此外,我们开发了Tas-Seq,Tas-Seq2的更新版本,其中基因检测灵敏度及其实用性得到了增强。tas-seq2不仅可以应用于基于纳米韦尔的系统(例如bd rhapsody),但也要基于液滴的系统(例如10x铬)和基于板的系统(例如smart-seq2)。tas-seq2在小鼠脾脏和人类冷冻的PBMC样品中,比原始10x Chroumimum V3(10x Tas-Seq2)的基因比原始10x chroumimus V3(10x Tas-Seq2)高1.5-2倍。现在,我们正在开发用于高分辨率空间转录组学立体声的Tas-Seq2,用于分析固定细胞,并将其细胞吞吐量增加10-100倍。此外,我们正在收集人间质肺病患者,纤维化大鼠肺和鼠我们还建立了博来霉素诱导的肺纤维化模型的时间顺序scrna-seq数据中细胞 - 细胞通信的时间网络分析,并通过使用遗传修饰的小鼠来验证集线器细胞和相关的细胞外分子,并验证分子的作用。我们还建立了体内器官系统,该系统概括了博来霉素诱导的肺损伤的反应,并发现离体系统还可以诱导与鼠模型中无法观察到的与人类IPF相关的细胞集。
根据世界卫生组织 (WHO;https://www.who.int/whr/1996/media_centre/press_release) 的数据,传染病每年导致 1700 多万人死亡。其中,由抗菌素耐药性 (AMR) 细菌引起的医源性感染越来越难以治疗,威胁着我们在医疗保健和预期寿命方面的进步,并在全球范围内产生了巨大的社会和经济影响 (https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance)。仅在欧洲,AMR 每年导致 33,000 人死亡,医疗保健和生产力损失达 15 亿美元 (EU Commission, 2017; Cassini et al., 2019)。美国每年发生超过 280 万例 AMR 感染,超过 35,000 人因此死亡 (CDC, 2019)。患有 AMR 感染的患者可能需要住院超过 13 天,每年增加 800 多万住院日 ( Ventola, 2015 )。当前应对这种令人担忧的情况的策略包括投资研发新抗生素。癌症是全球发病和死亡的另一大原因;2015 年癌症造成 880 万人死亡。与 AMR 感染类似,人们几十年前就认识到对经典癌症化疗药物和/或新型靶向药物的耐药性,这是化疗在癌症治疗中取得成功的重大障碍。显然,治疗感染和癌症的最大挑战是治疗耐药性和缺乏新的抗菌或抗癌药物。微生物本身是抗生素/抗癌药物最丰富的来源,而目前未知或无法培养的细菌是新型生物活性分子的最大来源之一。抗菌和抗癌药物均可从自然环境或肠道菌群中的细菌中获得,而放线菌素 D 和博来霉素等一些药物可能具有双重抗菌和抗癌特性(Karpinski 和 Adamczak,2018 年)。本研究主题中发表的论文(七篇研究文章和三篇评论)进一步证实了天然细菌中具有抗菌和抗癌特性的生物活性分子的多样性,如下文所述。
背景。作为先天免疫系统效应,天然杀伤细胞(NK细胞)在肿瘤免疫疗法反应和临床结果中起着重要作用。方法。在调查中,我们收集了TCGA和GEO队列的卵巢癌样品,总共包括1793个样品。此外,还包括四个高级浆液卵巢癌SCRNA-SEQ数据以筛选NK细胞标记基因。加权基因共表达网络分析(WGCNA)识别与NK细胞相关的核心模块和中心基因。进行了“计时器”,“ Cibersort”,“ McPcounter”,“ Xcell”和“ Epic”算法,以预测每个样品中不同免疫细胞类型的效率特征。使用套索量算法来建立风险模型来预测预后。最后,进行了药物敏感性筛查。结果。我们首先在每个样品的填充中对NK细胞进行了评分,并发现NK细胞水平的水平影响了卵巢癌患者的临床结果。因此,我们分析了四个高级浆液卵巢癌SCRNA-SEQ数据,在单细胞水平上筛选NK细胞标记基因。WGCNA算法筛选基于大量RNA转录组模式的NK细胞标记基因。最后,我们的研究中总共包括42个NK细胞标记基因。随后,使用14个NK细胞标记基因为Meta-GPL570队列开发14基因预后模型,将患者分为高风险和低风险亚组。结论。该模型的预测性能在不同的外部人群中得到了很好的验证。肿瘤免疫微环境分析表明,预后模型的高风险评分与M2巨噬细胞,癌症相关的纤维细胞,造血干细胞,基质评分以及NK细胞,NK细胞,细胞毒性评分,B细胞分数,B细胞和T细胞CD CD4+TH1正相关。此外,我们发现博来霉素,顺铂,多西他赛,阿霉素,吉西他蛋白和依托泊苷在高风险组中更有效,而紫杉醇对低风险组患者的治疗性更好。通过利用NK细胞标记基因在我们的研究中,我们开发了一种新功能,能够预测患者的临床结果和治疗策略。
Adcetris ® (brentuximab vedotin)。抗 CD30 抗体-药物偶联物 (ADC)。重组嵌合 IgG1 抗体与细胞毒剂单甲基澳瑞他汀 E (MMAE) 偶联。PF:用于输注溶液的浓缩粉末。I:与阿霉素、长春花碱和达卡巴嗪 (AVD) 化疗联合治疗未经治疗的 CD30+ IV 期霍奇金淋巴瘤 (HL)。自体干细胞移植 (ASCT) 后复发或进展风险增加的 CD30+ HL。ASCT 后复发或难治性 CD30+ HL,或如果干细胞移植不是治疗选择,至少接受过两次治疗后复发。与环磷酰胺、阿霉素和泼尼松 (CHP) 化疗联合治疗未经治疗的 CD30+ 外周 T 细胞淋巴瘤 (PTCL)。复发或难治性全身性间变性大细胞淋巴瘤 (sALCL)。全身治疗后病情进展或无法接受其他全身治疗的 CD30+ 皮肤 T 细胞淋巴瘤 (CTCL)。D:作为单一疗法或与 CHP 联合使用时,建议剂量为每 3 周静脉输注 1.8 mg/kg,每次 30 分钟。与 AVD 联合使用时,建议剂量为每 28 天周期的第 1 天和第 15 天静脉输注 1.2 mg/kg,每次 30 分钟。如果患者体重超过 100 公斤,则应使用 100 公斤计算剂量。CI:对成分过敏。与博来霉素联合使用。 W&P:进行性多灶性白质脑病、胰腺炎、严重感染和机会性感染、输液相关反应、肺毒性、肿瘤溶解综合征、周围神经病变(感觉/运动)、血液毒性(包括发热性中性粒细胞减少症)、Stevens-Johnson 综合征和中毒性表皮坏死松解症、重度肾功能不全和中度或重度肝功能不全时毒性增加、肝毒性(主要表现为 ALT/AST 升高)、胃肠道并发症、高血糖、生殖影响。与化疗联合使用时,建议所有患者使用生长因子 G-CSF 进行一级预防。有关剂量调整,请参阅专业人员信息。IA:与酮康唑联合使用会增加 MMAE 的暴露量。与利福平联合使用会降低 MMAE 的暴露量。 Brentuximab vedotin 预计不会改变由 CYP3A4 酶代谢的药物的暴露。P&L:除非明确需要,否则不应在怀孕期间使用 Adcetris。不建议在哺乳期间使用。不良反应:非常常见 (≥1/10):感染、周围感觉神经病变、恶心、疲劳、腹泻、发热、上呼吸道感染、中性粒细胞减少、皮疹、咳嗽、呕吐、关节痛、周围运动神经病变、输液相关