TMI3410 是一款 1MHz 恒定频率、电流模式降压转换器。它非常适合需要从单节锂离子电池或其他输入源(输入电压为 2.5V 至 5.5V)获得高达 2A 的超高电流的便携式设备,并且输出电压可调节至低至 0.6V。TMI3410 还可以在 100% 占空比下运行以实现低压差操作,从而延长便携式系统的电池寿命,而轻负载操作可为噪声敏感应用提供非常低的输出纹波。高开关频率可最大限度地减小外部元件的尺寸,同时保持较低的开关损耗。内部斜率补偿设置允许设备以较小的电感值运行,以优化尺寸并提供高效的操作。TMI3410 采用 5 引脚 SOT 封装,并提供可调版本。该设备提供两种操作模式,即 PWM 控制和 PFM 模式开关控制,可在更宽的负载范围内实现高效率。
本研究中的 TFET 为浮体 SOI 器件,因此应首先评估执行电荷泵浦测量的可行性 [19]。当用具有恒定基极电平和幅度的方波脉冲栅极时,漏极和源极保持在相同的电位,该电位扫过 0 至 1.5 V 的适当范围,以激活 Si/栅极电介质界面处的生成-复合过程。发现在 P+ 源极接触处测得的电流与栅极脉冲的频率成正比,证明了电荷泵浦装置的正确性 [20],[21]。因此,即使我们的基于 SOI 的 TFET 中没有体接触,由于源极和漏极具有相反的掺杂类型,我们仍然可以执行电荷泵浦测量来评估 N it 。对于下面所示的电荷泵结果,栅极由 500 kHz 方波驱动,其边沿时间为 100 ns,幅度为 1.5 V,基准电平为 0 V,脉冲占空比为 50%。
摘要 — 采用 96 字线层技术开发了一款 128 Gb 1 位/单元 3-D 闪存芯片。一种具有较少字线和位线时间常数的新型芯片布局结构实现了快速读取访问时间。新引入的程序序列即使在写入/擦除循环后也能实现更高的可靠性和更少的读取重试。还采用了外部 VPP 电源 (12 V)、电流模式参考分布和自动温度代码刷新来提高芯片的性能。新的占空比校正器成功获得了更宽的 DQS 单位间隔。因此,所提出的芯片具有 4 µ s 的读取访问延迟和 75 µ s 的编程时间,比采用相同技术的传统 3-D 闪存快 12-13 倍和 4-5 倍 [Maejima et al. , (2018)]。随机读取延迟(tRRL)估计小于 50 µ s,这使得能够减少固态硬盘(SSD)系统的总读取访问时间。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是最有希望在长距离光纤上实现的技术,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性调整帧交织来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
以下规格涵盖了 ARC150/S500-CL 电弧喷涂系统的标准范围。有关具体报价,请参阅详细报价单并交叉引用每台设备的零件编号。为了响应客户对系统灵活性的反馈,但其吞吐量要高于我们的 350A 系统,我们创建了 500A、ARC150/S500-CL 系统。客户反馈还表明,在某些情况下,600A 和 700A 系统很重(因为需要电缆容量)。由于在手动喷涂复杂结构时吞吐量很高,有时也很难控制均匀的涂层厚度。为此,Metallisation 为 ARC150 系统配备了 500A 激励器,在吞吐量、重量和控制之间实现了平衡。ARC150 的设计原则是使用成熟的推/拉技术和 ARC140 系统的风冷电缆。我们保持了长期供应能力,并且与 350A 系统相比,生产量提高了 40% 以上。枪、激励器、驱动装置和供应包都经过了重新设计,以适应增加的负载和喷涂电流。与所有金属化电弧喷涂系统一样,ARC150 被设计为在世界任何地方以 100% 的占空比运行。
TMI3411 是一款 1.0MHz 恒定频率、电流模式降压转换器。它非常适合需要从单节锂离子电池获得高达 2A 的超高电流的便携式设备,同时在峰值负载条件下仍能实现超过 90% 的效率。TMI3411 还可以在 100% 占空比下运行,实现低压差操作,延长便携式系统的电池寿命,而轻负载操作可为噪声敏感应用提供非常低的输出纹波。TMI3411 可以从 2.5V 至 6V 的输入电压提供高达 2A 的输出负载电流,输出电压可以调节至低至 0.6V。高开关频率可最大限度地减小外部元件的尺寸,同时保持较低的开关损耗。内部斜率补偿设置允许设备以较小的电感值运行,以优化尺寸并提供高效的操作。TMI3411 采用 5 引脚 SOT 封装,并提供可调版本。该装置提供两种操作模式,PWM控制和PFM模式切换控制,可在更宽的负载范围内实现高效率。
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53
双通道波形分析仪是复杂测量的关键设备。它可以以高达 10 MHz 的采样率测量电压和电流,并确定直流平均值、均方根值或峰值(高达 500 V 和 1 A)。与时间相关的测试参数包括频率、周期、时间间隔、脉冲宽度、占空比、上升和下降时间。可以从轨迹中确定事件(边缘、相对最大值/最小值)的数量和时间,也可以将轨迹与容差模板进行比较(图 3)。虽然传统的存储示波器基本上是为交互式视觉评估而开发的,但 AMV 的波形分析仪是为生产环境中的自动化、可重复测试而设计的。由于具有全面的触发功能,因此只有感兴趣的跟踪段会首先保存在 64 K 内存中,然后搜索所需的标准。通过预设的评估触发阈值和滞后,可以从受噪声或干扰损害的信号中清楚地确定实际事件,而不会将任何波动误解为最大值(图 4)。这些评估在 DSP 控制下的测试单元中以最佳速度运行。因此省去了耗时的跟踪下载。
以下规格涵盖了 ARC150/S500-CL 电弧喷涂系统的标准范围。有关具体报价,请参阅详细报价单并交叉引用每台设备的零件编号。为了响应客户对系统灵活性的反馈,但其吞吐量要高于我们的 350A 系统,我们创建了 500A、ARC150/S500-CL 系统。客户反馈还表明,在某些情况下,600A 和 700A 系统很重(因为需要电缆容量)。由于在手动喷涂复杂结构时吞吐量很高,有时也很难控制均匀的涂层厚度。为此,Metallisation 为 ARC150 系统配备了 500A 激励器,在吞吐量、重量和控制之间实现了平衡。ARC150 的设计原则是使用成熟的推/拉技术和 ARC140 系统的风冷电缆。我们保持了长期供应能力,并且与 350A 系统相比,生产量提高了 40% 以上。枪、激励器、驱动装置和供应包都经过了重新设计,以适应增加的负载和喷涂电流。与所有金属化电弧喷涂系统一样,ARC150 被设计为在世界任何地方以 100% 的占空比运行。
版本:2001 年 12 月 8 日 附录 A - 基本概率和统计理论 A1 - 概率集 A1-1 集合运算和代数 A1-2 集合枚举 A1-3 概率的公理和基本规则 A2 - 随机变量 A2-1 概率密度函数和累积分布函数 A2-2 瞬时和累积故障率 A2-3 描述统计 A2-3.1 位置测量:平均值、中位数、众数 A2-3.2 变异性测量:范围、方差、标准差 A3 - 概率分布 A3-1 浴盆曲线 A3-2 二项分布、几何分布和泊松分布 A3-2.1 简单备件计算 A3-3 负指数分布 A3-3.1 占空比的影响A3-4 威布尔分布 A3-5 正态分布 A3-6 对数正态分布 A3-7 伽马分布 A3-8 贝塔分布 A3-9 卡方分布 A4 置信水平和区间 A4-1 常规 A4-2 贝叶斯 A4-3 学生 t 分布的临界值 A4-4 双侧卡方置信限乘数 A4-5 单侧卡方置信下限乘数 A5 问题和练习