卫星量子通信的进步旨在通过提高传输信息的安全性来重塑全球电信网络。在这里,我们研究了大气湍流对地面站和卫星之间光学区域中连续变量纠缠分布和量子隐形传态的影响。更具体地说,我们研究了在下行链路和上行链路场景中,由于分布中的各种误差源(即衍射、大气衰减、湍流和探测器效率低下)导致的纠缠退化。由于使用这些分布式纠缠资源的量子隐形传态协议的保真度不够,我们包括一个中间站,用于状态生成或光束重新聚焦,以分别减少大气湍流和衍射的影响。结果表明,在低地球轨道区域的下行链路中,自由空间纠缠分布和量子隐形传态是可行的,但在中间站的帮助下,在上行链路中也是可行的。最后,完成恶劣天气条件下微波光学比较研究,以及地地和卫星间量子通信水平路径研究。
摘要 本文介绍了用于 FACSAT-2 (SAT-CHIRIBIQUETE) 太空任务的立方体卫星的关键设计,该卫星用于对哥伦比亚领土进行地理参考观测和分析,以保护环境。该卫星通过两个有效载荷提供电光多光谱图像(分辨率在 4.75 m 和 5 m 之间)数据,同时使用 1000-1700 nm 短波红外光谱范围内的光谱仪提供数据,用于监测温室气体。根据高级技术要求和操作概念,进行了空间、地面和发射段架构的输入识别和定义,定义了一个六单元卫星、一个位于卡利市的带有 S/X 波段天线的地面段,以及使用具有发射器相关特性的 EXOpod。根据欧洲航天局的 ECSS 标准,详细定义和表征了机械结构、电力系统、数据和命令处理系统、机载通信系统和姿态控制和确定系统的子系统。初始设计方案是根据空间、操作和技术要求以及可用于太空任务的财务预算定制的。值得注意的是,本文包含哥伦比亚的独家贡献,包括 S/X 波段天线的定义、加密软件以及物理接口板的设计和实施,以实现卫星总线和 Argus 2000 光谱仪之间的电子兼容性。关键词:FACSAT-2;立方体卫星;关键设计;航天器子系统;空间架构;MultiScape;Argus;地球观测;空间发展;哥伦比亚在太空。
CogniSAT-XE1 TM 板的数据传输和命令控制通过 USB 或以太网接口进行。该板充当机载计算机 (OBC) 上客户端应用程序的服务器。在 OBC 上运行,板操作完全由 Ubotica™ 软件控制。OBC 通过所选接口将固件(启动映像)和 NN blob 和/或 DPE 配置传输到板。初始传输后,图像可以通过接口传输到板,操作结果通过同一接口传回。板的电源循环需要重新传输固件。
中继通信卫星在月球背面和极地探测任务中发挥着重要作用。鹊桥中继通信卫星是为嫦娥四号月球背面着陆器和月球车提供中继通信支持的研制的,自2018年6月14日进入绕地月平动点2的halo任务轨道以来,已在轨运行30多个月,工作良好,为着陆器和月球车提供了可靠、连续的中继通信支持,完成了嫦娥四号月球背面软着陆和巡视探测任务。月球南极地区探测具有很高的科学价值,中国南极探测任务的新型中继通信卫星也在研究中。本文概述了鹊桥中继通信卫星的系统设计和在轨运行情况,提出了用于月球南极探测任务的中继通信卫星的系统概念。最后对月球中继通信卫星系统的未来发展进行了展望。
摘要 美国宇航局地球科学技术办公室 InVEST(地球科学技术空间验证)计划资助的 HyTI(高光谱热像仪)任务将演示如何从 6U 立方体卫星平台获取高光谱和空间长波红外图像数据。该任务将使用空间调制干涉成像技术生成光谱辐射校准的图像立方体,该立方体有 25 个通道(8-10.7 m 之间,分辨率为 13 cm -1),地面采样距离约为 60 m。HyTI 性能模型表明窄带 NE Ts 小于 0.3 K。HyTI 的小巧外形是通过使用无活动部件的法布里-珀罗干涉仪和 JPL 的低温冷却 HOT-BIRD FPA 技术实现的。发射时间不早于 2021 年秋季。HyTI 对地球科学家的价值将通过机载处理原始仪器数据来生成 L1 和 L2 产品来展示,重点是快速提供有关火山脱气、地表温度和精准农业指标的数据。
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
摘要 在拥挤的低地球轨道 (LEO) 区域,对空间碎片的检测、跟踪和分类需求日益增加。检测碎片的一种方法可能是使用基于空间的无源双基地雷达 (PBR)。STRATHcube 项目提议将立方体卫星发射到 LEO 作为 PBR 技术演示器,在那里将测试斯特拉斯克莱德大学开发的用于检测空间碎片的信号处理算法。该概念涉及在低空轨道上运行的立方体卫星上的雷达接收器和天线,以检测在高空轨道上运行的运行卫星发射的无线电信号。这些信号可能已被在运行卫星和立方体卫星之间运行的物体修改,因此表明存在碎片。本文将介绍将 PBR 技术集成到立方体卫星上作为 STRATHcube 任务的有效载荷,并讨论由于小型平台的限制而面临的挑战。研究了使用定制的 3D 天线和现成的贴片天线作为有效载荷的设计选项。完成了每个选项的高级设计,以评估它们对可跟踪碎片大小的能力并确定其质量和功率参数。在系统层面进行了广泛的权衡分析,以缩小立方体卫星平台上 PBR 有效载荷的选项范围后,确定贴片天线选项是促进立方体卫星上实验的最佳方式,因为它体积小、质量大。STRATHcube 任务的完整设计将使 PBR 技术在轨演示成为可能,如果成功,将为太空界提供一种比传统地面跟踪更便宜、更方便的替代方案。这种方法将向业界证明,业界可以使用这种方法在未来更大规模地实施。
对微生物浮游生物生物多样性的评估和监测对于获得对海洋环境的健康状况的良好评估至关重要。PETRI-MED项目通过制定新的策略来根据卫星观测来监测微生物浮游生物群落组成和功能来解决这一必要。培养皿将专注于地中海作为具有深远的生态和文化重要性的全球生物多样性热点。Petri-Med项目的主要目标包括(i)基于创新的卫星指标的开发,以确定微生物浮游生物社区的生物多样性状态和趋势,(ii)鉴定微生物浮游生物分布和多样性的微生物浮游生物分布和(iii)的自然连接式的生物群体及其多样性范围的范围,包括生物群体的自然连接,包括生物群的自然连接,包括生物范围。通过关注海洋健康和/或生物地球化学状态的关键指标。这样做,培养皿将主要依赖卫星光学放射测量(即海洋颜色,OC),从而利用最新OC欧洲数据集的时间和空间特征(即,由copernicus sentinel-3和欧洲航天机构的OC-CCI)具有偏僻的隔离式观察(即copernicus Sentinel-3和欧洲航天机构),并具有偏僻的海拔(AS-Art Space)。电流建模和基因组技术。为了实现合并遥感,生物地球化学/物理建模以及原位测量测量的雄心勃勃的目标,Petri-Med将依靠人工智能(AI)。PETRI-MED的总体目标是使决策者和利益相关者获得必要的知识,以根据定量的实时指标对生态系统管理采用优先级别方法。这包括保护和实施保护策略和政策,以保护生物多样性,量化各个层面实施的行动的影响,并为海洋保护区(MPA)(MPA),关键生物多样性领域以及生态或生物学上重要的海洋领域提供系统的,事实支持的事实支持。此外,彼得索(Petrimed)试图评估MPA管理对气候变化的可行性,从而确保在面对环境挑战时为保护海洋生态系统的保护策略。总而言之,PETRI-MED代表了一种全面而创新的方法,可以促进我们对地中海中微生物浮游生物生物多样性的理解。通过卫星技术,法学技术和AI的整合,该项目为有效的海洋生态系统管理和保护策略提供了宝贵的见解和工具。
模块化卫星架构的持续发展,加上自适应制造工艺的改进,为太空制造创新乃至在轨服务铺平了道路。目前,卫星在轨制造面临的挑战包括高度可靠、精确和自适应的制造和检查过程、解决地球上意外问题的远程操作方法,以及对所有相关活动和条件进行数字化表示以保持完全控制的手段。AI-In-Orbit-Factory 项目使用各种 AI 方法解决了每个挑战。对于在轨工厂和所有正在进行的过程的必要数字化表示,使用了基于知识的方法和数字孪生方法,从而实现了自适应、灵活和易于理解的制造过程。特别是可以描述不同制造机器之间复杂的信息流、协调生产过程的数字过程孪生和生产中卫星的数字孪生。此外,可以通过推理识别冲突和可能的错误来源。利用上述知识库和标准化模块化组件,可以根据所需的任务要求自动规划特定任务卫星的组成。在机器人操纵器的帮助下,使用高分辨率相机和参考图像对每个模块进行光学生产错误检查,然后将其集成到卫星结构中。集成后,子模块将以学习到的标称子系统行为模型作为输入,进行优化测试和异常检测程序。此外,每个操作步骤都使用力反馈和基于视觉的异常检测器进行监督。对于自动组装失败的情况,开发了具有力反馈的双边遥控系统。为了提高遥控组装的精度并减少精神和身体负荷,人类操作员需要借助自适应虚拟固定装置(触觉约束)。自适应夹具从演示和模拟中学习,并根据操作阶段进行参数化,在整个接近、定位和触觉操作阶段提供从粗到细的支持。仲裁组件检测当前操作阶段以选择合适的支撑夹具并确保平稳过渡。关键词:数字孪生、AIT、遥操作、人工智能、机器人制造本文概述了人工智能方法和我们实现可靠、自适应的在轨制造的方法,并介绍了初步结果。