立方体卫星已成为深空探索的重要选择,但必须提高其自主性,以最大限度地提高科学回报,同时限制操作的复杂性。我们在此介绍了一种在深空巡航的立方体卫星背景下的自主轨道确定解决方案。研究案例是从地球到火星的旅程。考虑使用立方体卫星标准的光学传感器。添加图像处理以 0.2 ” 的精度提取遥远天体的方向:它由多重互相关 (MCC) 算法组成,该算法使用图像背景中的明亮恒星。然后,构建无迹卡尔曼滤波器 (UKF) 以从天体的连续方向执行异步三角测量。在无法进行线性近似的情况下,UKF 满足预期性能。在地球-火星巡航中期,轨道重建达到 30 公里的 3 σ 精度。此外,使用典型的 CubeSat 硬件,滤波器的中央处理器 (CPU) 成本估计为每次迭代不到 1 秒。它已准备好在与数据融合、更快收敛和姿态控制节省相关的新可观测量方面进一步改进。
摘要 了解和预测废弃地球静止轨道卫星和火箭体的自旋状态演变对于空间态势感知、主动清除碎片、卫星维修、异常解析和小行星演化都具有重要意义。有明确的证据表明,许多废弃地球静止轨道卫星自旋状态主要由 Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) 效应驱动。YORP 效应是由于太阳辐射和热再发射扭矩引起的自旋状态演变。观测对于了解 YORP 如何驱动自旋状态以及验证动力学模型至关重要。不幸的是,从无处不在的光度光变曲线数据中提取自旋状态(自旋周期、转动角动量矢量、瞬时姿态)具有挑战性,因为地面望远镜无法解析地球静止轨道卫星。即使对于众所周知的物体,光变曲线反演也常常会在建模不确定性(即详细的卫星几何形状、反射特性)内产生几个或更多非常拟合的自旋状态解。此外,有强有力的证据表明,YORP 效应使卫星从匀速旋转转变为非主轴翻滚。这种翻滚状态使光变曲线反演过程更加复杂,因为翻滚运动由两个独立的周期驱动。为了帮助自旋状态分析,特别是翻滚情况,我们结合了在 Goldstone 深空通信中心获得的多普勒雷达观测数据。通过研究著名的退役 GOES 气象卫星系列,我们获得了所有目标的明确自旋周期估计值和非常窄的极点解,与光变曲线数据无关。我们注意到在两个月的时间内,自旋速度和极点方向发生了显著变化。这些发现与 YORP 驱动的演化一致。
开发并使用了一个高含量/高通量平台,用于在体外对人类原代卫星细胞的强大表型评估,以发现可以改善肌肉恢复的化学探针。使用两个高度注释的小分子库开发了一个1600复合试验屏幕。此屏幕产生了15剂的反应量,增加了来自单个肥胖人类供体的卫星细胞的增殖率。在三牛肉肥胖超级筛查中进行反筛选时,其中两个剂量仍然具有响应性。ALK-5抑制剂LY364947被用作评估卫星细胞增殖/延迟分化的阳性对照。一种多元方法用于探索性数据分析,以发现扩散与分化依赖性依赖性细胞表型的变化。最初的筛查工作成功地识别出许多与刺激增殖和延迟分化的效果相关的表型结果。
摘要 - 全球导航卫星系统(GNSSS)越来越受到干扰,例如来自干扰器和欺骗者的干扰,它们的性能仍然在挑战城市和室内方面挑战。因此,全世界都在努力开发互补定位,导航和时机(PNT)解决方案。当前研究下的一种这种互补方法是所谓的Leo-PNT,即基于低地球轨道(LEO)卫星的PNT溶液,尤其是在小型或小型化的卫星上。此类卫星的建筑物,发射和维护成本低至中度。在设计新的Leo-PNT解决方案时将要克服几个挑战,并结合了所有三个卫星段:1)信号空间(SIS)或空间段; 2)接地段; 3)用户/接收器段。本文在无线通道传播障碍的固有约束下,对SIS设计挑战进行了调查,以及针对SIS功能的一些设计建议。我们基于MATLAB Quadriga Simulator,在现实无线通道模型下解决了不同的星座类型,可实现的覆盖范围和精度(GDOP)边界的几何稀释以及可实现的载体与噪声比(CNR)。我们还考虑了一方面的低成本/卫星数量低/低成本/较低的卫星数量,另一方面出现了良好的CNR,另一方面,轨道上的卫星数量低/较低,另一方面讨论了有关LEO-PNT SIS设计的几个优化标准。
空间动力学实验室正在为 SmallSats 开发一种原型“绿色”混合原型推进系统。该系统基于犹他州立大学专利的高性能绿色混合推进 (HPGHP) 技术。HPGHP 利用 3D 打印丙烯腈丁二烯苯乙烯 (ABS) 独特的介电击穿特性,允许重新启动、停止和重新点火。HPGHP 使用气态氧 (GOX) 作为氧化剂时工作最可靠,但当用高测试过氧化氢 (HTP) 代替时,会出现点火可靠性和延迟问题。这一缺陷是由于 HTP 的高分解能垒造成的。测试表明,氧化铝上的铂等贵金属催化剂可有效分解 90% 的单推进剂形式的 HTP,但分解释放的能量不足以可靠地点燃混合火箭。本研究报告了一种用于混合火箭的非催化热点火方法。使用气态氧预引线引发燃烧,一旦发生完全 GOX 点火,HTP 就会被引入热燃烧室。GOX/ABS 燃烧产生的残余能量会热分解 HTP 流,而游离氧可实现完全 HTP 混合燃烧。本文介绍了使用 90% HTP 和丙烯腈丁二烯苯乙烯 (ABS) 和聚甲基丙烯酸甲酯 (PMMA) 作为燃料的 0.5、1.0 和 5 N 推力水平的原型系统的设计选项和测试结果。
近年来,小型卫星的重要性日益凸显。尽管小型航天器已经存在了几十年,但随着其开发技术进步以及融入世界主要航天国家武装部队,其军事应用最近才开始受到重视。本文分析了小型卫星对印度军队三个军种的 C4ISR 能力的重要性。小型卫星并不是满足印度陆军、海军和空军 C4ISR 需求的灵丹妙药,但将有助于部分满足其与传感器相关的需求。它们还有助于印度武装部队实现多层次和分布式能力。未来几年,印度国防规划中小型卫星的投资应更加突出。
新技术是为了使用轨道碎片通过电离层时产生的等离子体波来跟踪空间中的小物体[1,2,3]。已经对计算机模拟和实验室测量进行了研究。原位观察结果证实了这些等离子体波的存在是在空间传感器与已知空间对象的结合过程中进行的。小空间物体通过结构化环境时,也可以使用接地传感器和远程卫星仪器检测到。阿拉斯加的HAARP HF设施通过产生对齐的违规行为(FAI)提供了这种结构化环境。空间碎片和卫星通过这些不规则性会激发血浆排放,例如惠斯勒,压缩alfvén或较低的杂种波。当带电的空间对象遇到FAI时,轨道动能转换为电磁等离子体振荡而产生了惠斯勒波动扰动[3。4]。吹口哨者在距离源区域约9000 km/s的范围内繁殖,可以在几个地球 - 拉迪的范围内检测到。在加拿大Cassiope/Swarm-E航天器上的原位电场探头已检测到100 km的快速磁波。检测后,需要空间碎片地理位置才能更新轨道预测模型。从主机传感器的原位测量值可以从空间中电磁(EM)等离子体波的测量值提供范围和到达角度。从目标对象形成e x b poynting通量,从而产生其源方向。到达的角度需要EM场的矢量传感器,以从空间碎屑中给出入射信号的电(E)和磁性(H)矢量成分。这个方向的时间历史记录允许估计目标轨迹通过主机传感器平台通过。当带电的目标碎片越过田间对齐的不规则性时,它会发射一个分散波形,作为惠斯勒下调或磁通型上的速度。来自源点的传播在这些信号中引起时间分散,这些信号在时间和空间范围内都延伸。匹配的带有小波的信号的滤波器处理,等离子波形可以在特定的生成时间确定范围到源的范围。
CubeSat 具有成本低、开发周期短的优点,因此为许多想法和提案做出了贡献,例如教育、科学、技术验证和商业任务。
观察行星过渡和其他尖端的科学任务可以利用负担得起的纳米卫星来探测有趣的恒星目标。PICSAT是一种专门观察Beta Pictoris星系的立方体,旨在提供高精度的恒星指向,这是行星过境检测的关键要求。PICSAT的态度确定和控制系统负责传递高素质航天器指向,需要基于动态模拟器的专用开发。本文在低地球轨道以及其消除模式的情况下为立方体提供了动态态度和轨道传播模拟器。验证已通过PICSAT的IN-IN-IN-FORT数据进行。既可以为态度和轨道获得高精度动态模型。这样的模型非常适合从航天器设计到数据开发的不同任务阶段。因此,这是最大程度地减少平台和有效载荷失败的机会的关键工具,尤其是在诸如PICSAT之类的卫星中,其指向都取决于两者。PICSAT留下了一个持久的遗产:其平台数据使我们能够获得对未来任务很有价值的风格模型。