建议 6/8 — 规划缓解全球导航卫星系统的脆弱性 各国:a) 评估其空域内全球导航卫星系统脆弱性的可能性和影响,并在必要时采用公认和可用的缓解方法;b) 对全球导航卫星系统(GNSS)频率进行有效的频谱管理和保护,以减少无意干扰或降低 GNSS 性能的可能性;c) 向国际民航组织报告可能对国际民用航空运行产生影响的全球导航卫星系统有害干扰案件;d) 建立并执行强有力的监管框架,管理全球导航卫星系统中继器、伪卫星、欺骗器和干扰器的使用;e) 允许充分利用机载缓解技术,特别是惯性导航系统; f) 当确定需要地面辅助设备作为缓解策略的一部分时,优先保留测距设备(DME)以支持惯性导航系统(INS)/DME 或 DME/DME 区域导航,以及在选定跑道上保留仪表着陆系统。3
CSNC 中国卫星导航大会 EGNOS 欧洲地球静止导航叠加服务 EIAST 阿联酋先进科学技术研究所 ESA 欧洲航天局 ESPI 欧洲空间政策研究所 EUPOS 欧洲定位系统 EUREF 欧洲参考框架分委员会 FAI 世界航空运动联合会 FCC 美国联邦通信委员会 FIG 国际测量师联合会 GAGAN GPS 辅助 GEO 增强导航系统 Galileo 欧洲全球导航卫星系统 GEO 地球同步轨道 GLONASS 全球导航卫星系统 GNSS 全球导航卫星系统 GPS 全球定位系统 ETRS 欧洲地球参考系统 IADC 机构间空间碎片协调委员会 IAG 国际大地测量学协会 IAIN 国际导航学会协会 ICA 国际制图协会 ICAO 国际民用航空组织 ICG 全球导航卫星系统国际委员会 IDM 干扰检测与缓解 IERS 国际地球自转与参考系统服务 IGMA 国际 GNSS 监测与评估 iGMAS 国际 GNSS 监测与评估服务 IGS 国际 GNSS 服务
关于:这是一个由ISRO启动的区域导航卫星系统(以前称为印度区域导航卫星系统)。Navic Network:Navic的设计使用了7颗卫星的星座,其中3个卫星放在地静止轨道和4个卫星中,并将4颗卫星放置在倾斜的地球同步轨道中。Navic Services:平民用户的标准职位服务(SPS)和战略用户的限制服务。覆盖范围:印度和印度边界以外1500公里的地区。准确性:Navic's SPS提供的精度高于20米,并且时间准确性比40纳秒更好。其他:Navic SPS信号与其他全球导航卫星系统(GNSS)信号(即美国GPS(美国),Glonass(Glonass)(俄罗斯),Galileo(欧洲联盟)和Beidou(中国)。
随着全球导航卫星系统 (GNSS)、区域导航卫星系统 (RNSS) 和星基增强系统 (SBAS) 的进步推动定位、导航和授时 (PNT) 精度和弹性的提高,太空导航正在快速发展。GPS、GLONASS、伽利略和北斗等主要 GNSS 星座正在不断升级其系统,增加新功能,包括增强信号结构、卫星间链路和扩展服务。与此同时,QZSS 和 NavIC 等区域系统正在朝着更大的独立性和改进的功能发展。这些进步在卫星 PNT 系统易受干扰和欺骗的时代变得日益明显。同时,对替代 PNT 技术(例如低地球轨道 (LEO) 卫星系统和地面创新)的研究和开发正在获得动力,以确保提供可靠的导航服务。
EGNOS 欧洲地理导航覆盖系统 E-OTD 增强型观测时差 GAGAN GPS 辅助地理增强导航(或 GPS 和地理增强导航) GLONASS 全球导航卫星系统 GNSS 全球导航卫星系统 IPDL-OTDOA 空闲期下行链路观测到达时差 LCS 定位服务 MSAS 多功能卫星增强系统 NA-ESRD 北美紧急服务路由数字 NA-ESRK 北美紧急服务路由密钥 NANP 北美编号方案 QZSS 准天顶卫星系统 SBAS 卫星增强系统 U-TDOA 上行链路到达时差 WAAS 广域增强系统 注:在本文件中,文中使用的首字母缩略词要么以其完整展开形式阅读,要么以其字母名称阅读,没有一致的原则。
国内航路和终端运行 ...................................................................................................................................................... 104 基于全球导航卫星系统 (GNSS) 的区域导航 (RNAV) 进近程序 ........................................................................................ 104 仅使用横向引导的区域导航 (RNAV) 进近 ......................................................................................................................... 105 全球导航卫星系统 (GNSS) 叠加进近 ............................................................................................................................. 105 区域导航 (RNAV) 进近的垂直引导 ............................................................................................................................. 105 基于气压垂直导航 (Baro-VNAV) 的垂直引导区域导航 (RNAV) 进近 ............................................................................................................................. 105 基于广域增强系统 (WAAS) 的垂直引导区域导航 (RNAV) 进近 ............................................................................................................................. 106 5.5.2 广域增强系统 (WAAS) NOTAM ............................................................................................................................. 107 负 W 符号 ......................................................................................................................................................................... 107 5.5.3 5.5.4 空间天气 ............................................................................................................................................................. 107 5.6 仪表飞行规则 (IFR) 飞行计划设备后缀 ............................................................................................................................. 108 5.7 航空电子数据库 ............................................................................................................................................................. 108 5.8 使用全球导航卫星系统 (GNSS) 代替地面辅助设备 ............................................................................................. 108
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
AR 增强现实 CEOS 地球观测卫星委员会 CGLS 哥白尼全球陆地服务 CLMS 哥白尼陆地监测系统 CMEMS 哥白尼海洋环境监测服务 DAS 驾驶员咨询系统 DIAS 数据和信息访问服务 EC 欧洲委员会 ECMWF 欧洲中期天气预报中心 ECV 基本气候变量 EDAS EGNOS 数据访问服务 EEA 欧洲环境署 EGNOS 欧洲地球静止导航叠加服务 EGNSS 欧洲全球导航卫星系统 EMS 应急管理服务 EMSA 欧洲海事安全局 EO 地球观测 ESA 欧洲航天局 FOC 全面作战能力 GAGAN GPS 辅助地理增强导航 GCC 伽利略控制中心 GCOS 全球气候观测系统 GDP 国内生产总值 GEO 地球观测组织 GIS 地理信息系统 GLONASS 全球导航卫星系统 GLS 全球陆地服务 GMES 全球环境和安全监测 GNSS 全球导航卫星系统 GPS 全球定位系统 GRC 伽利略参考中心 GRSP大地测量参考服务提供商 GSC GNSS 服务中心 GSMC 伽利略安全监控中心 GST 伽利略系统时间 GTRF 伽利略地球参考框架 IoT 物联网 KASS 韩国增强卫星系统
在使用超轻型飞机进行航空摄影的实践经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,在地形不等高的情况下,必须建造人工地面目标。另一方面,获得高质量的航空摄影的问题可以通过使用导航卫星系统来解决。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。
超轻型飞机航空摄影的实际经验表明,由于载体重量轻,摄影飞行剥离很复杂。为了克服这个问题,必须在等高线较差的地形上建造人工地面目标。另一方面,使用导航卫星系统可以解决获得高质量航空摄影的问题。在这方面,建议的下一步是为超轻型飞机配备大地测量卫星系统,以确定照片投影中心的坐标。然而,需要深入研究超轻型飞机驾驶时的飞行坡度对卫星信号接收稳定性和导航系统定位精度的影响。