摘要 偏置场作为一种低频平滑信号,对磁共振(MRI)图像具有一定的破坏作用,是医生诊断和图像处理(如分割、纹理分析、配准等)的主要障碍。在分析受损的MRI图像之前,需要一个预处理步骤来校正图像中的偏置场。与传统基于信号模型和先验假设的偏置场去除算法不同,深度学习方法不需要对信号和偏置场进行精确建模,也不需要调整参数。经过深度神经网络训练大训练集后,输入带有偏置场的MRI图像,输出校正后的MRI图像。本文提出以log-Gabor滤波器组获得的多个频带上的偏置场局部特征图像和原始图像作为输入,通过深度可分离卷积神经网络对脑MRI图像的偏置场进行校正,并使用残差学习和批量归一化来加速训练过程并提高偏置场校正性能。我们的训练模型在 BrainWeb 模拟数据库和 HCP 真实数据集上进行了测试,定性分析的结果表明我们的训练模型取得了比传统最先进的 N4 和 NIMS(非迭代多尺度)方法更好的性能。关键词:磁共振成像;强度不均匀性校正;偏置场;Log-Gabor 滤波器;深度学习
根据2015年阿尔茨海默氏症的报告,世界上有4600万人患有痴呆症。疾病的诊断有助于医生更好地治疗患者。疾病的迹象之一与白质,灰质和脑脊液有关。因此,脑成像中三个组织的自动分割尤其是磁共振成像(MRI)在医学分析中起重要作用。在这项研究中,我们提出了一种有效的方法,可以在三维(3D)脑MRI中自动细分这些组织。首先,深度学习模型用于细分肯定和不确定的区域。在不确定的区域中,另一个深度学习模型用于对每个像素进行分类。在实验中,一种自适应U-NET模型,用于分割确定和不确定的区域,并且使用多个输入的局部卷积神经网络(CNN)模型仅在不确定区域中对每个像素进行分类。使用真实的图像数据库,Internet脑部分割存储库数据库评估我们的方法,其中有18人(IBSR 18)(https://www.nitrc.org/projects/ibsr),并与艺术方法进行比较。
我们开发了一个用于构建可变形模板的学习框架,该模板在许多图像分析和计算解剖学任务中起着基础性作用。用于模板创建和图像与模板对齐的传统方法经历了数十年的丰富技术发展。在这些框架中,模板是使用模板估计和对齐的迭代过程构建的,这通常在计算上非常昂贵。部分由于这一缺点,大多数方法为整个图像群体计算单个模板,或为数据的特定子组计算几个模板。在这项工作中,我们提出了一个概率模型和有效的学习策略,该模型和有效的学习策略可以产生通用或条件模板,并与一个神经网络联合使用,该神经网络可以有效地将图像与这些模板对齐。我们展示了该方法在各种领域的实用性,特别关注神经成像。这对于不存在预先存在的模板的临床应用特别有用,或者使用传统方法创建新模板的成本可能过高。我们的代码和地图集可作为 VoxelMorph 库的一部分在线获取,网址为 http://voxelmorph.csail.mit.edu 。
L. Guo博士,C。XU教授国际生物界面和生物调节州食品科学与技术的关键实验室,以及食品科学与技术学院江南大学1800 Lihu Road,Wuxi,Jiangsu Province 214122,P。R. R.中国电子邮件: S. ji,X. Chen教授灵活设备创新中心(IFLEX)MAX PLANCK – NTU联合实验室,用于人造感官材料科学与工程学学校Nanyang Technological University 50 Nanyang Avenue 50 Nanyang Avenue,新加坡639798,新加坡电子邮件,新加坡电子邮件: 639798,新加坡教授J. CAI数据科学系和AI Monash University Clayton,Victoria 3168,澳大利亚电子邮件:Jianfei.cai@monash.eduL. Guo博士,C。XU教授国际生物界面和生物调节州食品科学与技术的关键实验室,以及食品科学与技术学院江南大学1800 Lihu Road,Wuxi,Jiangsu Province 214122,P。R. R.中国电子邮件: S. ji,X. Chen教授灵活设备创新中心(IFLEX)MAX PLANCK – NTU联合实验室,用于人造感官材料科学与工程学学校Nanyang Technological University 50 Nanyang Avenue 50 Nanyang Avenue,新加坡639798,新加坡电子邮件,新加坡电子邮件: 639798,新加坡教授J. CAI数据科学系和AI Monash University Clayton,Victoria 3168,澳大利亚电子邮件:Jianfei.cai@monash.edu
近年来,随着当前分类系统在数字内容识别中的快速发展,图像的自动分类已成为计算机视觉领域中最具挑战性的任务。可以看出,与人类的愿景相比,系统对于系统自动理解和分析图像的视力非常具有挑战性。已经完成了一些研究论文来解决低级当前分类系统中的问题,但输出仅限于基本图像特征。类似地,这些方法无法准确对图像进行分类。对于此领域的预期结果,例如计算机视觉,本研究提出了一种使用深度学习算法的深度学习方法。在这项研究中,一个基于卷积神经网络(CNN)的建议模型,该模型是一种机器学习工具,可用于图像的自动分类。该模型与图像的分类有关,为此,它采用Corel Image Dataset(Corel Gallery Image DataSet)作为参考。用于培训的数据集中的图像要比图像的分类更难,因为它们需要更多的计算资源。在实验部件中,使用CNN网络训练图像的精度为98.52%,证明该模型在图像的分类中具有很高的精度。
摘要 — 医学图像分类是医疗保健领域的一个重要关注领域,它涉及准确分类图像中的异常或异常。它需要快速准确的分类以确保对患者进行适当和及时的治疗。本文介绍了一种基于卷积神经网络 (CNN) 的模型,该模型利用 VGG16 架构进行医学图像分类,特别是在脑肿瘤和阿尔茨海默氏症数据集中。VGG16 架构以其提取重要特征的卓越能力而闻名,这对医学图像分类至关重要。为了提高诊断的准确性,进行了详细的实验设置,其中包括精心选择和组织涵盖数据集中不同疾病和异常的医学图像集合。然后调整模型的架构以实现图像分类的最佳性能。结果显示该模型在识别医学图像中的异常方面的效率,尤其是对于脑肿瘤数据集。给出了灵敏度、特异性和 F1 分数评估指标,强调了该模型准确区分各种医学图像疾病的能力。关键词——深度学习、卷积神经网络 (CNN)、VGG-16、医学图像分类。
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是由此预印本的版权持有者于 2025 年 1 月 2 日发布的。 ;https://doi.org/10.1101/2025.01.02.631092 doi:bioRxiv 预印本
土壤微生物的鉴定在农业和园艺中起着至关重要的作用,因为它可以监测有益物种并尽早发现病原体。在本研究中,我们提出了一种利用机器视觉和机器学习技术(特别是卷积神经网络)的系统,根据显微图像和形态特征自动识别不同的真菌和 Chromista。我们的系统旨在提供一种经济高效的病原体检测方法,改善农业系统的整体健康和生产力。我们使用土壤微生物数据集进行了实验,并使用精度、召回率和 F1 分数度量评估了分类器的性能。尽管存在类别不平衡和子图像检索不完善等挑战,但分类器仍取得了令人鼓舞的结果,总体精度为 82%,表明正确预测所有类别的正实例的准确率很高。此外,采用多数投票方案显著提高了分类器的性能,解决了代表性不足的类别问题。增强的结果显示平均精度和 F1 分数为 97%。我们的工作突出了 CNN 在土壤微生物识别方面的潜力,并为未来扩大数据集和纳入更广泛的微生物属的研究铺平了道路。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
摘要 — 量子机器学习仍然是量子计算领域中一个非常活跃的领域。其中许多方法已经将经典方法应用于量子设置,例如 QuantumFlow 等。我们推动这一趋势,并展示了经典卷积神经网络对量子系统的适应性——即 QuCNN。QuCNN 是一个基于参数化的多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似性。使用 QuCNN,可以通过单辅助量子比特量子例程实现反向传播。通过在一小部分 MNIST 图像上应用具有数据状态和滤波状态的卷积层、比较反向传播的梯度并针对理想目标状态训练滤波状态来验证 QuCNN。索引术语 — 量子计算、量子机器学习、卷积神经网络