。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是由此预印本的版权持有者于 2025 年 1 月 2 日发布的。 ;https://doi.org/10.1101/2025.01.02.631092 doi:bioRxiv 预印本
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问h t p://c r e a t i v e c o m m o ns。or g/l i c e n s e s/b y-n c-n c-n c-n d/4。0/。
近年来,随着当前分类系统在数字内容识别中的快速发展,图像的自动分类已成为计算机视觉领域中最具挑战性的任务。可以看出,与人类的愿景相比,系统对于系统自动理解和分析图像的视力非常具有挑战性。已经完成了一些研究论文来解决低级当前分类系统中的问题,但输出仅限于基本图像特征。类似地,这些方法无法准确对图像进行分类。对于此领域的预期结果,例如计算机视觉,本研究提出了一种使用深度学习算法的深度学习方法。在这项研究中,一个基于卷积神经网络(CNN)的建议模型,该模型是一种机器学习工具,可用于图像的自动分类。该模型与图像的分类有关,为此,它采用Corel Image Dataset(Corel Gallery Image DataSet)作为参考。用于培训的数据集中的图像要比图像的分类更难,因为它们需要更多的计算资源。在实验部件中,使用CNN网络训练图像的精度为98.52%,证明该模型在图像的分类中具有很高的精度。
摘要 EEG(脑电图)信号可用于判断患者是否会癫痫发作。事实证明,EEG 在癫痫发作的早期检测中至关重要。为了使用 EEG 信号检测癫痫发作,已经开发了几种机器学习模型。然而,其他人声称传统的基于规则的方法同样有效。本研究旨在反驳这一说法,并比较基于规则的技术和机器学习方法的性能。由于神经网络与人脑非常相似,因此被选为机器学习方法。数据集来自开源、免费使用的坦普尔大学医院异常 (TUAB) EEG 语料库。在使用两种方法对数据进行训练和测试后,基于规则的技术的准确率为 85.16%,而神经网络技术的准确率为 98.91%。
目的:这项研究旨在开发一种新的卷积神经网络深度学习(DL)技术,用于从计算机上进行自动化的脑组织分割(CT)扫描,并与磁共振成像(MRI)分割相比评估其性能。材料和方法:这项多中心回顾性研究收集了来自两个机构的199个健康个体的配对CT和MRI数据。将数据分为一个训练集(n = 100)和一个机构的内部测试集(n = 50),其中第二个机构的附加数据集(n = 49)用于外部验证。灰质(GM),白质(WM)和脑脊液(CSF)的地面真相面膜是从T1加权MR图像中赋予的。为三个大脑区域中的每个区域中的每个区域训练了基于U-NET的DL模型,并根据VGG19计算了感知损失。通过计算连续骰子系数(CDICE),联合会(IOU)和第95个百分位数Hausdorff距离(HD95)来评估模型性能。使用定位系数(R 2),类内相关系数(ICC)和Bland-Altman分析,将基于CT的分割的体积估计与MRI衍生体积进行了比较。结果:接受感知损失的DL网络与未经感知损失的训练相比,表现出色。体积分析表明,在内部/外部测试中,GM和WM分别为r 2 = 0.83/0.90和0.85/0.87之间的MRI衍生地面真相与基于CT的分割之间的一致性是r 2 = 0.83/0.90和0.85/0.87,而ICC = 0.91/0.94和0.92/0.93。在内部测试中,评估得分(没有感知损失与感知损失)为:CDICE = 0.717 vs. 0.765,HD95 = 6.641 mm,gm中的6.641 mm vs. 6.314 mm; CDICE = 0.730 vs. 0.767和HD95 = 5.841毫米,而Wm为5.644 mm; CDICE = 0.600 vs. 0.630和HD95 = 5.641毫米,而CSF中的5.362 mm,分别是分数。结论:提出的DL方法随着感知损失而增强,可改善CT图像的脑部分割。这种方法显示了有望作为基于MRI的分割的一种替代方法。
摘要 13 尽管测序革命已然到来,但迄今为止测序的大部分基因组仍然缺乏有关转录因子结合位点在调控 DNA 上的排列的任何信息。15 大规模并行报告基因检测 (MPRA) 有可能通过测量由调控区域的数千个突变变体驱动的基因表达水平来显著加速我们的基因组注释。然而,对此类数据的解释 18 通常假设调控序列中的每个碱基对都独立地对基因 19 表达作出贡献。为了能够以考虑调控序列上远距离碱基之间可能存在的相关性的方式分析这些数据,我们开发了深度学习 21 自适应调控序列标识符 (DARSI)。该卷积神经网络利用 22 MPRA 数据直接从原始调控 DNA 序列预测基因表达水平。通过利用这种预测能力,DARSI 系统地识别了转录因子在单碱基对分辨率下在调控区域内结合的位点。为了验证其预测,我们将 DARSI 与精选数据库进行了对比,证实了其在预测转录因子结合位点方面的准确性。此外,DARSI 预测了新的未映射结合位点,为未来的实验铺平了道路,以确认这些结合位点的存在并识别靶向这些位点的转录因子。因此,通过自动化和改进调控区域的注释,DARSI 生成了可付诸实践的预测,这些预测可以为理论-实验循环的迭代提供信息,旨在实现对转录控制的预测性理解。
Adesola Z. Musa 3,Oluwagbemiga Aina 3,Emmanuel T. Idowu 2和 *Kolapo M. Oyebola 1,3 1生物医学基因组研究中心(Cegrib)基因组研究中心(Cegrib),基础和应用科学学院,山上高级大学,山顶大学,山上12号,Lagos-bibadan Expressway,Nierveway,Niger-bibos-top University。 2寄生虫学和生物信息学部门,尼日利亚拉各斯分校科学系动物学系。 3尼日利亚尼日利亚医学研究所,尼日利亚。 4尼日利亚拉各斯基础医学学院生物化学系基础医学系。 5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。Adesola Z. Musa 3,Oluwagbemiga Aina 3,Emmanuel T. Idowu 2和 *Kolapo M. Oyebola 1,3 1生物医学基因组研究中心(Cegrib)基因组研究中心(Cegrib),基础和应用科学学院,山上高级大学,山顶大学,山上12号,Lagos-bibadan Expressway,Nierveway,Niger-bibos-top University。2寄生虫学和生物信息学部门,尼日利亚拉各斯分校科学系动物学系。3尼日利亚尼日利亚医学研究所,尼日利亚。4尼日利亚拉各斯基础医学学院生物化学系基础医学系。5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。5个遗传学,基因组学和生物信息学系,国家生物技术研发局,尼日利亚阿布贾。
摘要 - 本文提出了一种结合加固学习(RL)和PDN DETAP优化的遗传算法(GA)的混合算法。训练有素的RL代理使用图形卷积神经网络作为策略网络,并预测给定PDN阻抗和目标阻抗的DETAP解决方案,该解决方案是将其作为初始种群的播种。训练有素的RL代理在脱皮端口的数量方面可扩展。主要目标是节省计算时间并找到接近全球的最小值或全球最小值。通过转移学习来实现算法对不同DETAP库的概括,最终减少了RL代理的训练时间。 所提出的算法发现,与遗传算法相比,满足目标阻抗的脱酸溶液是两倍。通过转移学习来实现算法对不同DETAP库的概括,最终减少了RL代理的训练时间。所提出的算法发现,与遗传算法相比,满足目标阻抗的脱酸溶液是两倍。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
光子整合电路是多模式光谱感觉系统的微型化解决方案。多模式光谱感官数据很复杂,具有较大的冗余性数据量,因此需要与高通信功率消耗相关的高通信带宽才能传输感官数据。为了规避这种高通信成本,光子传感器和处理器被带入亲密关系,并使用集成的硅光子卷积处理器提出了光子多模式内传感器计算系统。微区谐振器横梁阵列用作使用5位精度实现卷积操作的光子处理器,并通过图像边缘检测任务验证。证明了多模式光谱感觉数据的原位处理,进一步将处理器与光子光谱传感器整合在一起,从而实现了不同温度下不同类型和浓度的蛋白质种类的分类。在45个不同类别中,分类精度为97.58%。多模式内传感器计算系统展示了整合光子处理器和光子传感器以增强边缘光子设备的数据处理能力的可行性。