摘要这项工作研究了双相锂锂(LTO)/TIO 2纳米线作为锂电池阳极的稳定性。双相LTO/ TIO 2纳米线在80°C下的两个时代静脉片段成功合成了10、24和48 h。SEM图像显示,双相LTO/TIO 2的形态是直径约为100-200 nm的纳米线。XRD分析结果表明纳米线的主要成分是解剖酶(TIO 2)和尖晶石LI 4 Ti 5 O 12。LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48的第一个排放特异性能力分别为181.68、175.29和154.30 mAh/g。在速率容量测试后,LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48分别保持在161.25、165.25和152.53 mAh/g。每个样本的保留量为86.71%,92.86和89.79%。基于电化学性能的结果,LTO含量增加有助于提高样品循环稳定性。然而,延长的静态时间也产生了杂质,从而降低了循环稳定性。
由于无线电信设备的指数增长,对有效的电磁干扰(EMI)屏蔽材料的需求很大。这些设备发出的电磁辐射会破坏电子设备并引起健康危害。因此,开发可以保护设备和人类免于电磁辐射的材料至关重要。在这种情况下,纳米复合材料具有巨大的优势,这是因为可以调整界面以及在纳米复合材料中使用磁性和介电成分的互补特性来增强EMI屏蔽性能。这项工作表明,通过仔细调整合成参数,我们可以生长氧化双相锂(Ferri磁性α -Life 5 O 8和顺磁性α -LifeO 2)纳米复合材料,具有不同的两个阶段相对级分。相位分数的变化和两个阶段的同时增长使我们能够控制两个相之间的接口以及纳米复合材料的物理特性,这对EMI屏蔽性能有直接影响。详细的结构(X射线衍射),成分(拉曼规格Troscopicy)和形态学(高分辨率透射电子显微镜)表征得出了,以了解合成条件对EMI屏蔽参数的影响。改进的介电和磁性性能以及样品中的界面数量增加,几乎相等的两个阶段导致最佳性能。这项工作证明了使用具有可控界面和物理性能的EMI屏蔽的双相磁氧化物纳米复合材料的重要潜力,EMI屏蔽层将来可以构成更复杂的三式系统的基础。
背景:基于NIAID/FAAN标准,双相过敏反应的发生率为4-5%。我们的研究旨在调查Siriraj医院急诊科(ED)内与双相反应相关的频率和预测因素。方法:这项观察性研究评估了Siriraj医院在2015年1月至2019年12月的Siriraj医院的过敏反应患者的病历。,对这些样本进行了审查和验证。进行电话采访以收集更多数据。单 - 或双相反应进行了描述性分析。进行了预测建模。结果:在1888年的过敏反应病例中,有601例随机采样;分析了239名完成访谈的患者。双相反应的发生率为7.1%(17/239)。双相反应的常见触发因素是食品(57.7%),药物(31%),其他已知的过敏原(5.9%)。贝类,可食用的昆虫和小麦是领先的食物触发因素。双相反应与药物过敏史,任何过敏性疾病,过敏性鼻炎,先前过敏反应的数量,血管性水肿,较少概括的红斑,对贝类的反应较少,对NSAID的反应以及ED访问中没有肾上腺素的反应(所有p <0.1)。来自3个预测者预后模型,包括药物/特发性反应,从发作到第一次肾上腺素> 60分钟的持续时间以及任何皮肤水肿/血管性水肿,曲线下的面积为0.72(95%CI 0.54,0.90)。
摘要:欧洲战略长期愿景强调了更智能和灵活的系统在2050年之前实现净零温室气体排放的重要性。分布式能源(DER)可以提供所需的灵活性产品。分配系统运营商(DSO)与TSO(传输系统运营商)合作致力于通过基于市场的程序采购这些功能可及性产品。在所有DERS中,电池储能系统(BES)是一项有前途的技术,因为它们可能会出于广泛的目的而被利用。但是,由于其成本仍然很高,因此应优化其大小和位置,以最大程度地提高所有者的收入。打算提供一种评估要在DSO和TSO之间共享的灵活性产品的工具。对比的目标,因为BES所有者的收入最大化以及使用创新解决方案固有的DSO风险最小化。通过将方法应用于真实的意大利中型电压(MV)分布网络来验证所提出的模型。
本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
利用电磁 (EM) 场进行的无线通信是人体周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中被大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战以及低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,避免了因没有场模态转换而导致的转导损耗,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗。 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 中使用差分激励,在接收器 (RX) 中使用差分信号拾取,同时通过阻断流经脑组织的任何直流电流路径,在 1MHz 载波频率下提供比传统人体电流通信 (G-HBC) 低 ~41 倍的低功耗。由于通过人体组织的电信号传输是电准静态的,频率高达几十 MHz,因此 BP-QBC 可实现从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。BP-QBC TX 的功耗在 1Mbps 时仅为 0.52 μW(占空比为 1%),这在从可穿戴设备中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。这种低端到端通道损耗和高数据速率是由一种全新的大脑通信和供电方式实现的,在神经生物学研究、脑机接口、电疗和联网医疗领域具有深远的社会和科学影响。
利用电磁 (EM) 场进行的无线通信是人身周围可穿戴设备之间信息交换的支柱。然而,对于植入式设备,电磁场会在组织中产生大量吸收,而其他传输模式(包括超声波、光学和磁电方法)会由于一种能量形式转换为另一种能量形式而导致大量的转导损耗,从而增加了整体的端到端能量损耗。为了解决脑植入物中无线供电和通信的挑战并实现低端端通道损耗,我们提出了双相准静态脑通信 (BP-QBC),通过使用电准静态 (EQS) 信号,在通道长度约为 55 毫米的情况下实现 < 60dB 的最坏情况端到端通道损耗,从而避免了因没有场模态转换而导致的转导损耗。 12 BP-QBC 利用基于偶极耦合的信号在脑组织内传输,在发射器 (TX) 处使用差分激励,在接收器 (RX) 处拾取差分信号,同时通过阻断通过脑组织的任何直流电流路径,在 1MHz 载波频率下提供约 41 倍的低功耗,相对于传统的人体电流通信 (G-HBC)。由于通过人体组织的电信号传输是电准静态的,频率高达数十 MHz,因此 BP-QBC 允许从植入物到外部可穿戴设备的可扩展 (bps-10Mbps) 占空比上行链路 (UL)。 BP-QBC TX 的功耗在 1Mbps(占空比为 1%)时仅为 0.52 μW,这在从可穿戴中枢通过 EQS 脑通道到植入物的下行链路 (DL) 中收集的功率范围内,外部施加的电流小于 ICNIRP 安全限值的 1/5。此外,BP-QBC 消除了对颅下询问器/中继器的需求,因为它由于没有场传导而提供了更好的信号强度。如此低的端到端通道损耗和高数据速率是由一种全新的脑部通信和供电模式实现的,对神经生物学研究、脑机接口、电药物和互联医疗保健等领域具有深远的社会和科学影响。
1诊断科学系,诊断放射学,UMEA°大学,90187Umea˚,瑞典2 Umea治疗功能性大脑成像的中心(UFBI),UMEA˚大学,90187 Umea sweden,瑞典3年衰瑞典UMEA大学90187 UMEA大学综合医学生物学系5 Wallenberg分子医学中心,Umea°大学,UMEA大学,瑞典6 Max Planck UCL计算精神病学和老化研究中心,伦敦大学伦敦大学伦敦大学,伦敦,伦敦,英国7号慕尼黑邮政编码,Max Planck Institute for Secial Law and Social for Social Law and Social,80999。 jarkko.johansson@umu.se https://doi.org/10.1016/j.celrep.2023.113107
1 1计算机科学和数学系,艾米尔卡比尔技术大学,德黑兰,伊朗,2个精神病学系,心理社会健康研究所(PHRI),心理健康研究中心,伊朗医学科学学院,伊朗医学院医学院,伊朗,伊朗,伊朗,伊朗,伊朗,3个研究所研究所研究所研究所,伊朗研究所研究,委员会研究。德黑兰医学科学,伊朗,德黑兰医学科学大学5号,伊朗,伊朗的精神病学系51计算机科学和数学系,艾米尔卡比尔技术大学,德黑兰,伊朗,2个精神病学系,心理社会健康研究所(PHRI),心理健康研究中心,伊朗医学科学学院,伊朗医学院医学院,伊朗,伊朗,伊朗,伊朗,伊朗,3个研究所研究所研究所研究所,伊朗研究所研究,委员会研究。德黑兰医学科学,伊朗,德黑兰医学科学大学5号,伊朗,伊朗的精神病学系5
女性。12,13缺乏这种严重且令人衰弱的状况的理性治疗策略代表了紧迫的医疗需求。在大多数情况下,在潜在机制中,通过高弹性反应和临界神经蛋白的DYS调节的损伤似乎是最可能的情况。14 - 18小胶质细胞(大脑的免疫细胞)作为驻留巨噬细胞对感染和损伤的反应。19然而,这种所谓的神经浮动肿瘤可能会延长或过度,甚至会导致神经元损害。20 - 22我们先前报道了小胶质细胞反应性和神经元α-突触核蛋白(ASYN)的皮质积累的迹象,叙利亚金汉斯特人的脑反应性(ASYN)感染后14天(DPI),即,在19次缓解后14天(即DPI)。23,24这种动物模型是共同19的研究,由于其对原始病毒菌株的敏感性很高,并且对人类感染的敏感性很高,尤其是在发病机理,临床方面和性别差异方面。25 - 27 Asyn是一种高度丰富,可溶性和内在无序的突触前蛋白,在突触小囊泡胞吐作用中起作用。28最近,发现了ASYN的免疫调节作用。18然而,如果Asyn蛋白水平增加,例如响应损伤,则该蛋白可以汇总成具有潜在神经毒性能力的寡聚物和不溶性纤维。29,30