Loading...
机构名称:
¥ 2.0

过去几年,我们见证了一些关于过程演算量子扩展的提案的发展。其理由很明确:随着量子通信协议的发展,需要抽象并关注量子并发系统的基本特征,就像 CCS 和 CSP 对其经典对应物所做的那样。但到目前为止,还没有出现公认的标准,无论是语法还是行为语义。事实上,各种提案对量子值的观测属性应该是什么并没有达成一致,事实上,这些属性的合理性从未根据量子理论的规定得到验证。为此,我们引入了一种新的演算,即线性量子 CCS (lqCCS),并研究基于反讽和上下文的行为等价性的特征。我们的演算可以被认为是 qCCS 的异步线性版本,而 qCCS 又基于值传递 CCS。线性与异步通信的结合非常符合量子系统的特性(例如不可克隆定理),因为它可以确保每个量子比特只发送一次,从而精确指定某个过程的哪些量子比特与上下文交互。我们利用上下文来研究双相似性与量子理论的关系。我们表明,一般上下文的观察能力与量子理论是不相容的:粗略地说,它们可以根据量子值执行非确定性移动,而无需测量(因此会扰乱)它们。因此,我们细化了操作语义,以防止上下文执行不可行的非确定性选择。这会产生更粗的双相似性,以更好地适应量子设置:(푖)它将量子态的不可区分性提升到过程的分布,并且尽管存在额外的限制,(푖푖)它仍保留了基于经典信息的非确定性选择的表达能力。据我们所知,我们的语义是第一个满足上述两个属性的语义。

通过 Barbs 和 Contexts 实现量子双相似性

通过 Barbs 和 Contexts 实现量子双相似性PDF文件第1页

通过 Barbs 和 Contexts 实现量子双相似性PDF文件第2页

通过 Barbs 和 Contexts 实现量子双相似性PDF文件第3页

通过 Barbs 和 Contexts 实现量子双相似性PDF文件第4页

通过 Barbs 和 Contexts 实现量子双相似性PDF文件第5页

相关文件推荐

1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0