摘要:本文重点介绍一种应用于交通系统的原始控制方法,该系统包括聚合物电解质膜燃料电池 (PEMFC) 作为主要能源,超级电容器 (SC) 作为储能备用。为了将超级电容器与嵌入式网络的直流总线连接起来,使用了双端口双向 DC-DC 转换器。为了控制系统并确保其稳定性,通过采用微分平坦算法的非线性控制方法开发了网络的降阶数学模型,这是一种有吸引力且有效的解决方案,通过克服交通系统电力电子网络中普遍遇到的动态问题来使系统稳定。系统控制的设计和调整与平衡点无关,在该平衡点上,所提出的控制律考虑了 PEMFC 主电源、超级电容器储能装置和负载之间的相互作用。除此之外,还实现了负载功率抑制的高动态性,这是本文的主要贡献。为了验证所开发控制律的有效性,在实验室中实现了小型实验测试台,并在 dSPACE 1103 控制器板上实现了控制律。实验测试使用 1 kW PEMFC 源和 250 F 32 V SC 模块作为储能备份进行。最后,根据在驾驶循环中测量的实际实验结果验证了所提出的控制策略的性能,包括电动模式、骑行和再生制动模式。
摘要 模拟突触功能(例如增强和抑制)对于开发人工神经形态结构具有战略意义。通过在去除开关信号后利用电阻水平的逐渐放松,忆阻器可以定性地再现生物突触的短期可塑性行为。为此,已经提出了各种基于纳米制造的金属氧化物半导体堆栈的忆阻器。在这里,我们介绍了一种不同的制造方法,该方法基于以双层平面配置沉积的簇组装纳米结构氧化锆和金薄膜(ns-Au / ZrO x)。该装置表现出具有短期记忆和增强/抑制的忆阻行为。观察到的松弛可以用拉伸指数函数来描述。此外,在重复脉冲应用下,短期现象的特征时间会动态变化。我们的纳米结构装置的特点是与其他纳米级忆阻装置相比,导电路径长度明显更长;氧化锆纳米结构薄膜的使用使得该装置与神经元细胞培养兼容。
摘要 - 具有超低泄漏和出色稳定性的静态随机记忆细胞是当代智能设备中设备上层的记忆的主要选择。本文介绍了一个新型的8T SRAM细胞,其泄漏降低并证明是稳定性的。所提出的SRAM单元使用堆叠效果来减少泄漏和传输门作为访问晶体管以增强稳定性。已经根据功耗和静态噪声边缘(RSNM,HSNM和WSNM)分析了所提出的具有堆叠晶体管的拟议的8T SRAM细胞的性能。在22 nm技术节点时,发现基于FIN-FET的8T细胞的功耗为572 PW,与基于CMOS的8T细胞相比,该因子几乎降低了一个因子。此外,对于基于FinFET的新型8T SRAM细胞在22 nm技术节点的情况下,发现功耗被发现减少了一倍。𝟓×𝟏𝟎𝟏𝟎𝟐𝟐𝟐。WSNM,HSNM和RSNM的8T SRAM细胞在0.9 V电压电压下观察到具有FinFET逻辑的8T SRAM细胞的240 mV,370 mV和120 mV。与常规的6T填充细胞相比,所提出的细胞显示了20%,5.11%和7%的WSNM,HSNM和RSNM,这是分数的。还分析了SNM的灵敏度,并报告了温度变化的敏感性。此外,获得的结果证实了所提出的SRAM细胞的鲁棒性,与近期作品相比。