摘要:对全球变暖和温室气体的担忧增加了政府和公共部门寻找解决方案的兴趣。为了减少温室气体(尤其是甲烷)造成的全球变暖的影响,必须改变动物生产系统并采取新的战略方法。减少牲畜肠道甲烷是一个长期存在的问题,关系到饲料消耗的能源效率。在这篇综述中,研究了生产、传播和引入公认的科学和实用解决方案的来源,以减少奶牛养殖和生产单位的甲烷气体。为了进行这项研究,对 1967 年至 2022 年期间在有效数据库中发表的文章进行了彻底的搜索。共审查了 213 篇文章,经过筛选,159 篇被纳入研究并使用 PRISMA 流程图进行分析。一般来说,畜牧效率低、饲料质量低、知识缺乏和投资不足是贫穷或发展中国家排放这些气体的主要原因。另一方面,发展中国家可能并不总是能够采用工业化国家所采用的方法来减少甲烷和其他温室气体(如一氧化二氮)的产生。根据其国情,发展中国家应利用现有工具减少甲烷的生产和排放,同时考虑成本、当地知识、可行性和当地法律。未来,将更需要进行跨学科研究,以寻找可持续和可接受的方法来减少畜牧业单位(尤其是奶牛)的甲烷排放和其他温室气体。为了改变作为甲烷主要生产者的瘤胃产甲烷菌的数量,建议采取饲养管理、添加抑制剂和接种疫苗等策略。此外,还需要开展更多减少甲烷排放的应用研究。
a 南方医科大学公共卫生学院心理学系认知控制与脑健康实验室,中国广州 b 粤港澳大湾区脑科学与类脑智能研究中心,粤港精神疾病联合实验室,广东省中西医结合清热病基础研究中心,中国 c 香港理工大学应用社会科学系,中国香港特别行政区 d 香港大学脑与认知科学国家重点实验室,中国香港特别行政区 e 香港大学神经心理学与人类神经科学实验室,中国香港特别行政区 f 南方医科大学生物医学工程学院,中国广州 g 南方医科大学珠江医院精神科,中国广州
集成系统允许由于插入不同种类的树木和灌木而重新设计生产景观。多样化的牧场比在谷物上喂养的动物为动物提供了更大的范围和更多的植物营养素,除此之外,树豆类具有产生具有极好水平的粗蛋白的生物量的巨大潜力,以及共生氮固定的能力。假设建模可以成为解决系统性变化的相关工具,我们试图回答以下问题:“考虑牧场和作物生产的结合,如何对反刍动物的饲养系统进行建模?”因此,这项工作旨在创建一个建模框架,以指导在农场层面在热带条件下反刍动物的生产景观的重新设计。将要进行的活动将分为四个阶段:a)关于反刍动物耕作的现有指标和/或模型的书目研究; b)撰写意见文章(已经发表)和审查文章(本文); c)指示使用多功能草料工厂使用多功能生产景观重新设计的参数; d)通过为农村财产建立决策模型来展示新颖性。这项工作的假设是,可以通过从已经存在和/或正在构造的实验变量以及已发表的文献中获得多功能生产景观的重新设计。
●加速活动<->全新的项目●网络构建<->付费研究工作●年度数据份额<->项目数据的结束<->项目数据的结束●甲烷表型<->代理●需要实施焦点<->所需的科学●70%的科学●70%的杠杆资金利用资金<-> 30%的福利范围,需要额外的资金范围,需要筹集资金; GMG
1。对与反刍动物消化相关的微生物多样性的状态和趋势的专家观点17 2。专家对实施活动的现状的专家观点,旨在促进与反刍动物消化相关的微生物的可持续使用和保护23 3.旗舰项目“扩展,分析和开发悬挂的瘤胃微生物培养收藏” 23 4。《科罗尼维亚的成果》研讨会“改善了牲畜管理系统,包括农业生产系统等”(UNFCCC主题2 [e])28 5。专家对制定和执行政策,立法和机构安排的现状的专家观点,用于管理与反刍动物消化相关的微生物29 6.专家对组织之间合作现状的专家观点有助于与反刍动物消化相关的微生物的可持续使用和保护31
微生物居住在反刍动物的胃肠道中,并通过维持肠道健康来调节身体代谢。胃肠道健康状态不仅受到最佳发育和生理结构完整性的宏观因素的影响,而且还受到微级别的肠道菌群和免疫状态之间的微妙平衡。在年轻反刍动物中突然断奶会导致肠道的不完整发展,导致不稳定且不形成的微生物群。突然的断奶还引起了肠道微生态稳态的损害,导致肠道感染和疾病,例如腹泻。最近,已经研究了营养和功能性酵母菌培养以解决这些问题。在此,我们总结了肠道微生物与年轻反刍动物体之间的当前已知相互作用,然后我们讨论了使用酵母培养作为饲料补充剂的调节作用。酵母培养物是一种微生态制剂,其中含有酵母,富含酵母代谢物和其他营养活性成分,包括β-葡聚糖,曼南,消化酶,氨基酸,矿物质,矿物质,维生素,以及其他未知的生长因子。它通过提供特殊的营养底物来支持肠功能,刺激肠粘膜上皮细胞的增殖和肠道微生物的繁殖。此外,β-葡聚糖和曼南人有效刺激肠道粘膜免疫,促进免疫反应,激活巨噬细胞并增加酸性磷酸酶水平,从而提高人体对几种疾病的抵抗力。将酵母培养物纳入年轻反刍动物的饮食中,大大减轻了对胃肠道压力的损害,这也起着有效的策略来促进肠道菌群的平衡,肠道组织的发展和粘膜免疫系统的建立。我们的评论为在年轻反刍动物的饮食中应用酵母菌培养提供了理论基础。
摘要:瘤胃的产生是通过瘤胃发酵产生的代谢氢的主要水槽,并被认为是温室气体排放的相当多的来源。甲烷的产生是一种复杂的特征,受干物质摄入,进料组成,瘤胃菌群及其发酵,哺乳期,宿主遗传学和环境因素的影响。已经提出了各种缓解方法。由于单个反刍动物表现出不同的甲烷转化效率,因此低甲烷发射动物的微生物特征对于成功的瘤胃和环境友好的甲烷缓解可能是必不可少的。几种细菌种类,包括Sharpea,未表征的琥珀酰基科和某些Prevotella系统型,已被列为低甲烷发射绵羊和牛的关键参与者。未分类细菌的功能特征尚不清楚,因为它们尚未培养。在这里,我们回顾了瘤胃甲烷的产生和缓解策略,重点是瘤胃发酵以及瘤胃菌群的功能作用,并描述了最近从低甲烷发射和高丙酸牛奶中分离出的新型普雷特拉物种的系统发育和生理特征。本综述可能有助于更好地了解瘤胃消化过程和瘤胃功能,以确定可持续反刍动物生产的整体和环保甲烷缓解方法。
反刍动物的排放量负责导致全球变暖的人为温室气体的很大一部分。牛的甲烷排放量是弥漫性的,难以治疗,但是,已经提出了几种溶液,可以降低从牛发出的低(v/v)甲烷流,最高约30%。Wageningen大学和研究国际基因工程机竞赛提出的新型Cattlelyst生物滤器旨在通过引擎盖系统和两个在三层安全机制下收集和转化从牛发出的甲烷和氨和氨。目标是将大肠杆菌施加到合适的合成甲烷肉芽菌中。在本文中,试图在合适的甲肉营养菌株SM1或C1SAUX中表达合成甲烷营养。所得的产物是一个PSEVA2610-SMMO质粒,其中包含SMMO的亚基,并在MMOX基因中复制。无法实现其他伴侣的质粒,并且未显示SM1和C1SAUX菌株的甲基营养生长。最后,该假设既没有得到证实或拒绝。生物过滤器的合成甲烷植物正在成为一种越来越相关的技术来解决低浓度的甲烷,因为本文中探讨了多种技术进步。预计生物滤器设计的改进,例如在引擎盖中浓缩甲烷,多孔填料材料以及具有工程性的特定培养物,可以使生物过滤器成为实现全球甲烷承诺的有用工具。
短链脂肪酸(SCFA)是一类有机脂肪酸,长度为1至6碳。它们是由非消化碳水化合物(NDC)发酵的主要终产物。它们是断奶后反刍动物的基本能源。SCFA通过肠道菌群向宿主表示饮食的主要碳浮标。它们在调节胃肠道(GIT)的细胞膨胀和基因表达方面也起着至关重要的作用。最近,在理解SCFA及其与宿主的相互作用的免疫调节作用方面取得了显着进展。这项研究所涉及的过程涵盖了浮游性激活,淋巴细胞的增殖以及肠粘膜免疫成熟的成熟。重要的是要注意,肠粘膜免疫系统的建立和成熟与肠上皮细胞(IEC)(IEC)和肠道微生物群的稳态相关。因此,对SCFA在肠胃粘膜免疫反应中的作用的见解将增强我们对它们各种调节功能的理解。本综述旨在分析有关SCFA作为肠道菌群与动物健康之间基本信号分子作用的最新证据。此外,我们还提供了有关乳制犊牛肠粘膜免疫反应中SCFA的当前文献的摘要。
Sharon Huws是贝尔法斯特皇后大学的生物科学学院和全球粮食安全研究所内动物科学与微生物学教授。Huws教授负责在学校内部提供世界领先的研究和影响。 她的研究重点是增强在确保行星和人类健康的职权范围内的可持续牲畜生产。 She has won over £10M in funding in the past 5 years, published over 150 publications and led many global initiatives (e.g she coordinated the global ‘Rumen Microbial Genomics' network which underpinned the mission of the Global Research Alliance for Methane Mitigation from 2013-2023; currently she is leading a global project with 16 partners across the World (RUMEN Gateway project) to build a major biobank of ruminant gastrointestinal Tract Microbes)Huws教授是《微生物组》杂志的高级编辑,也是《姐妹杂志》动物微生物组的主编。 她还参加了苏格兰政府的学术咨询小组,该小组是农业改革实施监督委员会的工作。Huws教授负责在学校内部提供世界领先的研究和影响。她的研究重点是增强在确保行星和人类健康的职权范围内的可持续牲畜生产。She has won over £10M in funding in the past 5 years, published over 150 publications and led many global initiatives (e.g she coordinated the global ‘Rumen Microbial Genomics' network which underpinned the mission of the Global Research Alliance for Methane Mitigation from 2013-2023; currently she is leading a global project with 16 partners across the World (RUMEN Gateway project) to build a major biobank of ruminant gastrointestinal Tract Microbes)Huws教授是《微生物组》杂志的高级编辑,也是《姐妹杂志》动物微生物组的主编。她还参加了苏格兰政府的学术咨询小组,该小组是农业改革实施监督委员会的工作。
