我们提出了直接的奖励微调(草稿),这是一种简单有效的方法,用于调整扩散模型,以最大程度地提高可区分的奖励功能,例如人类偏好模型的分数。我们首先表明,可以通过完整的抽样程序将奖励函数梯度进行后退,并且这样做可以在各种奖励上实现强劲的绩效,超过了基于强化学习的方法。然后,我们提出了草稿:草稿K的更多有效变体,该变体仅将反向传播截断为采样的最后K步骤,而Draft-LV则获得了k = 1时的较低差异梯度估计。我们表明,我们的方法在各种奖励功能上都很好地工作,可以用来实质上提高稳定扩散1.4产生的图像的美学质量。最后,我们在方法和先前的工作之间建立了联系,从而提供了基于基于梯度的细胞调整算法的设计空间的统一观点。
在这项工作中,我们开发了卷积神经生成代码(Conv-NGC),这是对基于卷积/反卷积计算的情况进行预测性编码的概括。特定的是,我们具体地实现了一种灵活的神经生物学动机算法,该算法逐渐重新填充了潜在的状态图,以便动态地形成更准确的内部表示/重构自然图像模型。在复杂数据集(例如Color-Mnist,CIFAR-10和SVHN)等复杂数据集上进行了评估。我们研究了我们的大脑启发模型对重建和图像降解任务的有效性,并发现它具有卷积自动编码系统的竞争力,该系统通过误差的反向传播培训,并超过了它们,并超越了它们在造成的分发重构方面的表现(包括完整的90K ininic-10测试集)。关键字:预测编码;受脑为灵感的学习; compoter视觉,神经形态硬件,卷积
摘要 — 在本文中,我们建议使用模拟电路实现 S 型函数,该函数将用作多层感知器 (MLP) 网络神经元的激活函数,以及其近似导数。文献中已经提出了几种实现方法,特别是 Lu 等人 (2000) 的实现方法,他们提供了采用 1.2 µ m 技术实现的可配置简单电路。在本文中,我们展示了基于 Lu 等人的 S 型函数电路设计,使用 65 nm 技术以降低能耗和电路面积。该设计基于对电路的深入理论分析,并通过电路级模拟进行验证。本文的主要贡献是修改电路的拓扑结构以满足电路所需的非线性响应以及提取所得电路的直流功耗。索引词——激活函数、模拟 CMOS 电路、近似导数、反向传播、多层感知器、S 型函数。
本文旨在介绍一种新的神经网络学习程序,并证明它在一些小问题上效果很好,值得认真研究。前向-前向算法用两个前向传递取代了反向传播的前向和后向传递,一个使用正(即真实)数据,另一个使用网络本身可以生成的负数据。每一层都有自己的目标函数,即对正数据具有高优度,对负数据具有低优度。层中活动的平方和可以用作优度,但还有许多其他可能性,包括减去活动的平方和。如果正传递和负传递可以在时间上分开,那么负传递就可以离线完成,这使得正传递中的学习变得更加简单,并且允许视频通过网络进行流水线传输,而无需存储活动或停止传播导数。
该课程将涵盖实施计算成像和机器学习解决方案所需的基本数学和计算方法。课程将介绍:•与线性代数,向量空间和矩阵分解相关的基本对象和工具; •代表计算成像和机器学习的核心组成部分的数值优化方法。将首先引入向量计算中的基本概念和工具,包括矢量值功能和矩阵的梯度,以及反向传播和自动分化。然后,将涵盖基于优化的计算成像和机器学习问题的公式。之后,将详细介绍数值优化技术,重点是基于一阶确定性和基于随机梯度的方法。 •概率理论中的基本概念以及诸如贝叶斯推论,近似推断以及随机抽样方法等统计推断中的基本技术; •在计算成像和机器学习中的应用,包括分类,回归,降低性降低和密度估计。学生学习目标(SLO)
- 语义网络、框架和本体 第 3 周:机器学习简介 - 机器学习概述:监督学习、无监督学习、强化学习 - 回归和分类算法 - 模型评估和验证技术 第 4 周:监督学习算法 - 线性回归和逻辑回归 - 决策树和集成方法:随机森林、梯度提升 - 支持向量机 (SVM) 第 5 周:无监督学习算法 - K 均值聚类 - 层次聚类 - 主成分分析 (PCA) 和 t 分布随机邻域嵌入 (t-SNE) 第 6 周:自然语言处理 (NLP) - 文本处理和标记化的基础知识 - 命名实体识别 (NER) 和词性 (POS) 标记 - 情绪分析和文本分类 第 7 周:深度学习基础 - 人工神经网络 (ANN) 简介 - 深度前馈网络和激活函数 - 训练神经网络网络:反向传播算法第 8 周:卷积神经网络 (CNN) - CNN 架构基础
生物柴油是前瞻性燃料之一,可能能够取代石油燃料。然而,使用这种生物能源资源的系统比传统燃料容易腐蚀。在这里,已经通过减肥方法评估了用增值绿咖啡豆抑制剂在生物柴油中对铜金属的腐蚀,该方法产生了95.92%的抑制效率。理论上,通过人工智能评估腐蚀。使用CCD获得的表面图像被增强到699个图像样本。这些增强图像被馈送到基于反向传播的神经网络系统中,用于训练,验证和分类,以预测具有和没有抑制剂的生物柴油中铜的腐蚀行为。神经网络系统的培训,验证和测试预测精度分别为97.1%,96.2%和98.1%,总体准确度为97.1%。所提出的工具可用于实时动态评估腐蚀行为,以预测包括铜在内的各种金属的腐蚀行为。
量子计算机能否用于实现比传统方法更好的机器学习模型?这些方法是否适合当今嘈杂的量子硬件?在本文中,我们制作了一个 Python 框架,用于实现基于在量子硬件上评估的参数化量子电路的机器学习模型。该框架能够实现量子神经网络 (QNN) 和量子电路网络 (QCN),并使用基于梯度的方法对其进行训练。为了计算量子电路网络的梯度,我们开发了一种基于参数移位规则的反向传播算法,该算法同时利用了经典硬件和量子硬件。我们进行了一项数值研究,试图描述密集神经网络 (DNN)、QNN 和 QCN 如何作为模型架构的函数运行。我们专注于研究消失梯度现象,并分别使用经验费舍尔信息矩阵 (EFIM) 和轨迹长度量化模型的可训练性和表达性。我们还通过在人工数据以及真实世界数据集上训练模型来测试模型的性能。
论文摘要:我们提出了一个新的框架,用于通过对抗网估计生成模型,在该框架中,我们同时训练了两个模型:一种生成型模型g,捕获数据分布的生成模型G,以及一个鉴别模型D估计样品来自训练数据而不是G。G的可能性最大的可能性是使G的训练过程最大程度地使D造成错误的可能性。此框架对应于Minimax两人游戏。在任意函数g和d的空间中,存在一个独特的解决方案,g恢复了训练数据分布,而d则等于到处都是1/2。在多层感知器定义G和D的情况下,可以通过反向传播对整个系统进行训练。在培训或生成样本期间,不需要任何马尔可夫链或展开的近似推理网络。实验通过定性和定量评估生成的样品来证明该框架的潜力。
抽象的人工神经网络(ANN)是一种人工智能方法的方法,为复杂过程提供了有效的预性模型。开发了三种经过反向传播算法训练的独立ANN模型,以预测EF的化学氧需求(COD),悬浮固体(SS)和曝气罐混合酒悬浮固体(MLSS)浓度的Ankara Central Wastewater处理厂。通过对模型的训练和测试进行多个步骤来确定ANN模型的适当体系结构。ANN模型产生了令人满意的预测。均方根误差,平均绝对误差和平均绝对百分比误差的结果为3.23、2.41 mg/l,COD为5.03%; SS的1.59、1.21 mg/L和17.10%; MLSS分别为52.51、44.91 mg/L和3.77%,表明可以充分使用开发的模型。总体上还证实了ANN建模方法可能具有巨大的模拟,精确的性能预测和废水处理厂的过程控制的实施潜力。