动脉、植入式设备(如起搏器或植入式除颤器),或在最极端的情况下移植整个心脏(Aronow,2009)。然而,这些疗法并不能直接修复心脏受损的组织。为此,人们进行了无数次尝试,将干细胞衍生的心肌细胞(CM)直接整合到梗塞的心脏中(Silver 等人,2021),无论是单细胞植入(Lee 等人,2024)还是实验室制造的心脏贴片(Liu 等人,2024)。迄今为止,仍然存在阻碍这些治疗成功的重大挑战,例如细胞保留(Wu 等人,2021 年)、由于干细胞分化不完全而导致的畸胎瘤形成风险(Kawamura 等人,2016 年)或缺乏电生理整合(Gepstein 等人,2010 年;Liao 等人,2010 年)。解决这些问题的一步是持续生成干细胞衍生的成熟 CM,这些 CM 在移植后可以通过连接蛋白电耦合到现有的心脏组织(Roell 等人,2007 年)并对电信号作出反应以控制心跳(Mandel 等人,2012 年)。电信号对于体内心脏组织的发育非常重要(Thomas 等人,2018 年;Hirota 等人,1985 年)。体外电刺激 (ES) 此前已被探索作为心脏细胞成熟和功能的调节剂,特别是在人类诱导多能干细胞衍生的 CM (hiPSC-CM) 中 (Ronaldson-Bouchard 等人,2019 年;Ma 等人,2018 年;Hernández 等人,2018 年)。然而,这些研究的结果并不一致。虽然大多数研究表明,一定量的直接耦合脉动 ES 有利于 CM 成熟,但尚未就最佳刺激参数达成共识,包括刺激信号的频率、幅度和脉冲持续时间 (Dai 等人,2021 年)。虽然大多数已发表的研究都是使用 3 – 6 V/cm 范围内的电场强度进行的(Ruan 等人,2016 年;Crestani 等人,2020 年;Chan 等人,2013 年),但其他研究报告称 ES 低至 2 V/cm(Hirt 等人,2014 年)或高达 9 V/cm(Ronaldson-Bouchard 等人,2018 年)。研究在 ES 信号的频率(Tandon 等人,2011 年)和持续时间(Geng 等人,2018 年;Yoshida 等人,2019 年)以及开始此类刺激的发育时间点(Crestani 等人,2020 年;LaBarge 等人,2019 年)方面也存在显著差异。个别研究可能会同时改变多个参数,例如:电刺激的幅度、脉冲频率、持续时间和发展时间。鉴于其中一些研究(Gabetti 等人,2023 年;Hu 等人,2024 年)报告了多个参数变化的结果,但没有适当的控制,因此很难区分哪些参数对于指导心脏分化至关重要。生物反应器是动态细胞和组织培养容器,用于为体外生长的细胞提供刺激,从而重现静态培养条件下通常找不到的环境线索(Licata 等人,2023 年)。尽管最近开发了生物反应器来向心脏细胞传递电信号,但作者往往未能提供足够的细节来确保工作可以重现(Gabetti 等人,2023 年;Hu 等人,2024 年)。在本研究中,我们提出了一种生物反应器,用于精确、可控的电刺激体外生长在 2D 单层或 3D 球体中的细胞。该生物反应器设计用于低剪切流体混合,以增强营养物质的利用率,同时还允许在整个实验期间使用
结果:在碱性样品中,在 Prony 热液条件下(pH 10,30–75 °C)运行 6 天的 15 个反应器中均未观察到电流增加。相比之下,在 Panarea 热液条件下(pH 4.5–7,75 °C)运行的反应器中平均观察到 6 倍的增加。多因素分析显示,这些反应器的整体生物电化学性能使它们有别于所有其他 Panarea 和 Prony 条件,这不仅是因为它们具有更高的电流产量,还因为它们具有古细菌丰度(通过 qPCR 测量)。大多数反应器产生有机酸(6 天内高达 2.9 mM)。尽管如此,库仑效率表明这可能是由于培养基中微量酵母提取物的(电)发酵而不是 CO 2 固定。最后,通过 16S 宏条形码和排序方法描述了微生物群落,并确定了潜在的电营养类群。在帕纳雷亚反应堆中,较高的生长与一些细菌属有关,主要是芽孢杆菌和假交替单胞菌,其中前者在较高温度下(55°C 和 75°C)生长。在重现普罗尼湾热液条件的反应堆中,已知的兼性甲基营养菌,如鞘氨醇单胞菌和甲基杆菌占主导地位,似乎消耗甲酸盐(作为碳源),但不消耗来自阴极的电子。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月12日发布。 https://doi.org/10.1101/2025.01.08.631570 doi:biorxiv preprint
ficiencies探讨了在此类系统中优化非生物因素的潜力。核心原理涉及荧光荧光作为光合作用活性的实时指标,从而在研究人员和微生物之间提供了一种非侵入性,全面的通信方法。通过将这种方法与先进的机器学习技术整合在一起,该论文提出了一种将复杂荧光信号的反应方法的方法。这种方法不仅具有提高在受控环境(如生物反应器)中光合微生物效率的诺言,而且还为可持续生物燃料生产和其他生物技术应用的重大进步铺平了道路。本文强调了跨学科研究在克服光合作用效率的挑战中的重要性,并突出了生物反馈光生反应器的潜力,彻底改变了Algal生物技术领域。
结果与讨论:高温过程的火用效率值范围为 72% 至 100%,而低温过程的火用效率值范围为 2% 至 53%。这些效率取决于每个微反应器设计的可用源温度。产生净功率和使用工艺热之间存在权衡,特别是对于高温过程。考虑了三个热交换器位置:涡轮机之前(600 ℃ )、涡轮机和再生器之间(370 ℃ )和再生器之后(192 ℃ )。气化等高温过程需要的温度太高,不切实际。中温过程更适合涡轮机和再生器之间的热交换器,同时也可在涡轮机之前操作。巴氏灭菌和厌氧消化等低温过程可以在再生器后使用废热,不会影响发电。这些发现对于优化核微反应器的热量利用和与全球气候倡议保持一致非常有价值。
抽象的生物工程器官已被视为解决可移植器官短缺的有前途的策略。但是,使用当前的生物工程技术,仍然很难实现类似于天然器官的异质结构和复杂功能。这项工作介绍了器官工程和现有挑战的方法和困境。此外,根据最新的研究进展,总结了一个新的器官工程路线图,它使用自体生物反应器的模块化策略来创建器官级生物工程结构。简短地,在体外构建了自然器官的不同功能模块,并利用体内自体生物反应器来促进模块间组件,形成能够替代天然器官功能的完整生物工程器官。有生物工程的器官,例如仿生气管,在此路线图之后已成功制造出来。这款新的器官工程路线图显示了解决可移植器官短缺的前景,并且在临床应用方面有广泛的前景。
人类诱导的多能干细胞(HIPSC)被认为是医学中有前途的工具,有可能解除许多健康状况(例如神经退行性疾病和疾病)的治疗方法。但是,产生大量HIPSC仍然是一个挑战。Fraunhofer翻译中心的研究人员在Fraunhofer Insti-tute的硅酸盐研究ISC中使用了一种生物反应器,可用于自动化HIPSC的长期培养。人类诱导的多能干细胞(HIPSC)具有开发细胞疗法和药物以及疾病研究的巨大潜力。HIPSC与胚胎干细胞非常相似,但是它们在从成年受试者的结缔组织的成年细胞中进行了培养和重编程。优势是多能干细胞具有生产几乎任何类型的细胞或组织,而这些细胞或组织需要为自我修复目的而产生。也可以直接对受特定健康状况影响的细胞进行特定于患者的测试。为了满足对HIPSC的不断增长的需求,并允许大量的标准化生产,来自Würzburg的Fraunhofer ISC的一组研究人员已经开发了一种Dy-Namic孵化器和悬架生物反应器,可用于长期培养HIPSC的SUSI(susi for Subsie for for for for susi for for susie for for suspension for for susteension for susteensial insportion insportion of superension invopport'')。它提供了最佳条件,例如37摄氏度的温度和饱和含量为5%的CO 2的大气,这两者都是培养细胞的必要条件。生物反应器的一个关键组成部分是叶轮,一种搅拌器,它执行混合,充气和热量的重要任务,并在玻璃容器内部进行混合,充气和质量转移,以在细胞悬浮液内形成均匀的条件,从而实现了可靠的和可重复的细胞传播。“我们专注于细胞的好处,并考虑到这一点的生物反应器的所有组成部分,” Fraunhofer TLC-RT的科学家Thomas Schwarz说。例如,一个关键因素是在搅拌或搅动培养过程中影响细胞的剪切力。研究人员使用软件模拟来计算Impeller设计的最佳参数以及最有效的过程参数。bi-eActor内部的传感器连续监测这些参数,从而确保细胞悬浮培养物中的同质性,即使有大量细胞。玻璃容器封闭叶轮的玻璃容器也可与此设计一致。
化合物配方ΔHr(KJ/g)手推车(K)危险指数丙酮C 3 H 6 O -1.72 706 N乙炔C 2 H 2 -10.13 2824 E丙烯酸C 3 H 4 O 2 -2.18 789 N Ammonia NH 3 2.72 -N Benzoyl peroxolil peroxoyl peroxolc c c c c c c c 3 H 4 o 7 H 6 N 2 O 4 -5.27 1511 E Di-t-butyl peroxide C 8 H 18 O 2 -0.65 847 E Ethyl ether C 4 H 10 O -1.92 723 N Ethyl hydroperoxide C 2 H 5 O 2 -1.38 1058 E Ethylene C 2 H 4 -4.18 1253 N Ethylene oxide C 2 H 4 O -2.59 1009 N Furan C 4 H 4 O -3.60 995 N Maleic anhydride C 4 H 2 O 3 -2.43 901 N Mercury fulminate Hg(ONC) 2 2.09 5300 E Methane CH 4 0.00 298 N Mononitrotoluene C 7 H 7 NO 2 -4.23 104 N Nitrogen trichloride NCl 3 -1.92 1930 E Nitroguanidine CH 4 N 4 O 2 -3.77 1840 E辛烷C 8 H 18 -1.13 552 N邻苯甲基酸C 8 H 4 O 3 -1.80 933 N RDX C 3 H 6 N 6 N 6 N 6 N 6 N 6 N 6 -6.78 2935 E银叠氮化物AGN 3 -2.05> 4000 E TRINITROTORYEN