摘要:在过去十年中,电化学 CO 还原 (COR) 系统的可访问活动数量级增加了,特别是通过实施气体扩散电极 (GDE) 架构。随着 GDE 的有效几何面积(cm 2 到 m 2 )的扩大,反应器性能可能会因物理和化学空间变化而发生变化,而多相和多产品电化学系统的化学复杂性使这种变化变得复杂。这项工作通过多端口采样反应器测量和评估 COR 性能指标,以测量 COR GDE 通道下游的反应物和产物浓度。研究发现,氢气析出反应 (HER) 的法拉第效率 (FE) 在通道下游增加,这主要是由于 CO 分压的降低,而乙烯的选择性在通道下游保持相对恒定。这项工作强调了随着电化学反应器的物理扩大,性能的不均匀性,对 COR 和 CO2R 系统的未来扩展具有重要意义。R
建立有效生长微藻的有效光生反应器:评论MD。Mirazul Islam*,Hasibul Alam,Aishi Acharjee和Md。Salatul Islam Mozumder于2024年10月30日收到,于2024年12月20日修订,于2024年12月25日接受,于2024年12月31日出版,并于2024年12月31日出版,这是可以使用微藻来生产生物燃料,Nutrition和Biormediced的景观的前提。对微藻生长影响的四个主要因素是光,CO 2,营养和包括温度和pH值的过程条件。与其他开放系统(例如池塘,平板和管状型光生反应器中的控制和效率)相比,要高得多。 需要开发一个光生反应器,以增强质量运输和光穿透性并减少污染。 各种光生反应器在使用空运,气泡柱和搅拌箱方面具有其优点和局限性。 因此,混合生物反应器的使用使消除单个局限性成为可能。 本综述讨论并分析了光生反应器系统的特征,它们的缺点以及在微藻生产领域所取得的进展。 关键词:生物燃料,开放系统,培养系统,藻类生物量生产,生物反应器技术系化学工程与聚合物科学系,Shahjalal科学技术大学,Sylhet-3114,孟加拉国 * Mirazul Islam)引用这篇文章为:伊斯兰教,M.M.,Alam,H.,Acharjee,A。和Mozumder,M.S.I。 2024。 int。 J. Agril。 res。 Innov。要高得多。需要开发一个光生反应器,以增强质量运输和光穿透性并减少污染。各种光生反应器在使用空运,气泡柱和搅拌箱方面具有其优点和局限性。因此,混合生物反应器的使用使消除单个局限性成为可能。本综述讨论并分析了光生反应器系统的特征,它们的缺点以及在微藻生产领域所取得的进展。关键词:生物燃料,开放系统,培养系统,藻类生物量生产,生物反应器技术系化学工程与聚合物科学系,Shahjalal科学技术大学,Sylhet-3114,孟加拉国 *Mirazul Islam)引用这篇文章为:伊斯兰教,M.M.,Alam,H.,Acharjee,A。和Mozumder,M.S.I。2024。int。J. Agril。 res。 Innov。J. Agril。res。Innov。Innov。建立了生长微藻的有效光生反应器:综述。技术。14(2):153-162。 https://doi.org/10.3329/ijarit.v14i2.79511简介微藻被视为生物柴油,生物乙醇和生物氢化等生物燃料的重要来源(Islam and dixit,2024; Torres等,20223)。除了能源产生微藻外,还具有许多用途作为营养来源,生物培养剂和对抗环境污染的工具(Chowdury等,2020)。化石燃料的迅速耗竭以及其他挑战(例如碳的环境影响)扩大了寻找可再生能源供应(例如微藻)(Redec,2020; Egbo等,2018)。第一代生物燃料的一个缺点,他们争夺食品资源的竞争,与来自微藻的第三代生物燃料不同,这被认为是更可持续的,因此随着使用较少的资源而产生更多的能源,并且会产生更多的能源(Abdur Razzak等,2024; Abo et al。,2024; Abo et al。,2019; Arabian,20224; Arabian,2024)。光生反应器或PBR已被确定为在封闭环境中以生物量和其他商业用途的目的最大生物量生产的微藻生长的最佳方法(Singh and Sharma,2012; Santek and Rezic,2017年)。这使PBR优于开放系统(例如池塘),因为它们可以改善对生长条件,污染和生产力的控制(Aldailami等,2022; Erbland等,2020)。尽管如此,本文中提到的不同的PBR设计并非没有
摘要可再生能源生产的微生物的活性和生长仍受生物反应器中产生的死区的影响。与同一生物反应器的其他地区相比,这些区域形成了营养和热梯度,在某些地区引起了丰富的食物。当前的研究是识别那些死区的一步,然后是改善反应堆内介质流动的另一步骤。结果表明,生物反应器的内部可能是这种死区创造和扩散的关键因素。例如,圆盘型扩散器的位置有助于在反应堆底部生成这些区域。是使用当前研究中提出的环形型扩散器从反应器中的流体运动推断出来的。在两个生物反应器中都检查了最重要的因素的气泡尺寸,气体质量通量和圆角的辐射。结果表明,当圆盘扩散器被环形扩散器取代时,反应器该区域的这些参数有明显的改善。例如,以0.0198 m/s的速度记录了平均液体速度,而在两个反应堆中使用的相同气泡直径下,以0.00077 m/s的速度记录了速度,以0.00077 m/s的速度记录。在当前研究中还解决了数学模型中MI Croornisms存在的影响。结果表明,在环形扩散器存在下,生物消耗后仍位于反应器底部的氧气量高于常规反应器中的氧气。这清楚地强调了生物反应器内部部位设计的重要性。
第一单元 发酵基础知识。发酵罐的设计、无菌操作和密闭、发酵罐主体结构。搅拌罐反应器的设计方面。工作容积、挡板和叶轮的使用。叶轮的配置。用于微生物和动物细胞培养的发酵罐、植物的微繁殖。替代容器设计、常见的测量和控制系统。设计分批、补料分批和连续酶生物反应器。固定化细胞反应器和气升式反应器 – 传感器 – 发酵常见问题的解决方案。第二单元 工业发酵培养基 – 培养基配方、工业发酵接种物的开发。种子接种物和生长库参数发酵建模 – 模拟微生物生长和代谢。微生物生长动力学。结构化和非结构化动力学生长模型。莫诺德生长动力学、比生长率、生长产量、生产产量、Yg、Yo2、Yatp、饱和常数、维持能量。第三单元
在此过程中,每种化学品都按一定比例通过两个计量泵泵入非加压反应器。在反应器内,化学品相互反应生成二氧化氯。加水稀释后,在储罐中产生最终浓度为 2000ppm 的 ClO 2,产量为 10gr/h、30gr/h 或 60gr/h(基于购买的型号)。二氧化氯可以在泵的压力下直接泵入加压系统,如果没有压力,也可以泵入储罐,以将消毒剂分配到各个使用点。该系统可以与接触式水表、电流信号或二氧化氯测量按比例工作。
变量 数值 单位 参考 电解器效率(LHV) 65 % [36] 电解器 H 2 出口压力 30 bar [36] H 2 压缩多变效率 60 % [37] H 2 存储最大压力 350 bar [38] 气网压力 50 bar [39] CO 2 压缩多变效率 85 % [40] CH 4 压缩多变效率 85 % [40] 电解器标称功率 3 MW 本文 甲烷化反应器压力 10 bar [3] 甲烷化反应器温度 350 ºC [3] CO 2 源能耗 0.64 kWh/kg CO2 [41]
哥伦比亚大学将开发一种无膜电化学反应器,用于将二氧化碳转化为乙醇。电化学反应器中使用的大多数离子交换膜都易于肿胀和增塑,并且在某些条件下可能会分解。通过去除膜并更新电极组件以最大程度地减少细胞电阻 - 哥伦比亚的反应堆可以使用间歇性可再生能源刺激一种可持续的方式,以生产低成本的乙醇燃料。该项目的主要目的是将新型反应堆纳入在低温下运行的白色反应堆,该系统更适合动态操作,以产生高纯度乙醇。
抽象的化石燃料满足了人类大部分能量需求,由于其高碳排放而导致气候变化。有两种类型的能源可以替代化石燃料:可再生和核能。核能来源在效率和可持续性方面更有优势。由于脑尿液的产生要低得多,将th th的用作融合反应堆中的核燃料将有助于减少放射性废物。融合反应器被认为是有希望的,仍处于研发阶段。在这方面,混合融合 - 融合反应器似乎更有希望,而最近提出的Muon催化的DD融合与级联反应器的组合值得赞赏。在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。 关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1. 简介在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1.简介