- 使用广泛的核谱系和良好的可靠性使用最佳的核安全代码和商业代码 - 引入热通道因子来建模热 - 液压/中性不确定性 - 对使用1:1的尺度尺度量表的
确定人NK细胞播种密度和进食时间表。a)在特定的细胞密度(NK细胞/cm 2)处将人类NK细胞接种在G-Rex6M孔中。3×10 4细胞/cm 2在培养10天后,产生了最佳的折叠膨胀(〜300倍)。b)NK细胞(3×10 4细胞/cm 2)在不同的喂食时间表后在G-Rex6m井板中培养。与第0天的4倍细胞因子或每3天的1倍细胞因子相比,第0天的1倍细胞因子产生了相似的NK细胞表型和活力。单个1X细胞因子给药可减少工艺干预措施,同时保持一致的细胞表型。对于所有实验,使用CloudZ™NK细胞扩展试剂盒和培养基添加了IL-2,IL-12,IL-18和IL-21的培养基。
摘要 . 声流体技术结合了声学和微流体技术,为操纵细胞和液体提供了一种独特的方法,广泛应用于生物医学和转化医学。然而,由于多种因素,包括设备间差异、手动操作、环境因素、样品差异等,标准化和保持当前声流体设备和系统的优异性能具有挑战性。在此,为了应对这些挑战,我们提出了“智能声流体技术”——一种涉及声流体设备设计、传感器融合和智能控制器集成的自动化系统。作为概念验证,我们开发了基于智能声流体技术的微型生物反应器,用于人脑类器官培养。我们的微型生物反应器由三个组件组成:(1)通过声螺旋相涡旋方法进行非接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像头,以及(3)基于强化学习的控制器,用于闭环调节旋转操作。在模拟和实验环境中训练基于强化学习的控制器后,我们的微型生物反应器可以实现转子在孔板中的自动旋转。重要的是,我们的微型生物反应器可以实现对转子的旋转模式、方向和速度的出色控制,而不受转子重量、液体体积和工作温度波动的影响。此外,我们证明了我们的微型生物反应器可以在长期培养过程中稳定地保持脑类器官的转速,并增强脑类器官的神经分化和均匀性。与目前的声流体相比,我们的智能系统在自动化、稳健性和准确性方面具有卓越的性能,凸显了新型智能系统在生物电子学和微流体实验中的潜力。
Piyush Sabharwall 博士是爱达荷国家实验室 (INL) 核系统设计和分析部门的高级核研究科学家。Piyush 在核/热工程领域拥有超过 14 年的研发经验。他担任美国能源部核能办公室微反应堆研发项目的技术负责人,并领导多功能测试反应堆气冷筒式回路的开发。他帮助 INL 成为验证和确认、实验计划开发、小型模块化反应堆、熔盐反应堆技术和综合能源系统等领域的智力领袖。Piyush 撰写了两本书,为先进反应堆和热系统、工艺传热技术书籍撰写了章节,并发表了 120 多篇同行评审出版物。他是德克萨斯 A&M 大学机械工程系的兼职副教授,并在 ASME 传热部门(K-9 和 K-13 委员会)任职。他是 EPRI 先进(第四代)反应堆技术顾问小组的成员。Piyush 为国内外各行各业提供咨询服务,在积累技术专长的同时,专注于市场研究和经济可行性,以重建美国核工业基础设施,并使美国工业继续成为全球能源市场的领导者。
月球表面或向火星任务的基础是人类太空的潜在目的地。这些方案构成了一些新的挑战,因为任务的环境和操作条件将与国际空间站(ISS)的环境和操作条件有很大差异。一个关键参数将是增加任务持续时间和与地球更远的距离,需要与地球资源尽可能独立的生命支持系统(LSS)。ISS的当前LSS物理化学技术可以回收90%的水,并从宇航员的呼出CO 2中恢复42%的O 2,但它们无法生产食物,目前只能使用生物学来实现这一食物。未来的LSS很可能包括当前正在使用的其中一些技术,但还需要包括生物组件。潜在的生物候选者是微藻,与较高的植物相比,其收获指数,更高的生物量生产率和更少的水。在过去的几十年中,已经研究了几种藻类物种的空间应用,这是一个有希望的和广泛研究的物种。c. ulgaris是球形单细胞生物,平均直径为6 µm。它可以在广泛的pH和温度水平以及CO 2浓度中生长,并且表现出高度抗跨污染和机械剪切应力的耐药性,使其成为长期LSS的理想生物。为了连续和有效地产生LSS所需的氧气和食物,微藻需要在良好的控制和稳定的环境中生长。因此,除了生物学方面,培养系统的设计,即光生反应器(PBR),也至关重要。Even if research both on C. vulgaris and in general about PBRs has been carried out for decades, several challenges both in the biological and technological aspects need to be solved, before a PBR can be used as part of the LSS in a Moon base.其中包括:对藻类的辐射影响,部分重力下的操作,选择用于耕种和食物加工所需的硬件,系统自动化以及长期性能和稳定性。
在低地球轨道(LEO)(例如,到月球)和长期任务(例如,到MARS)之外的人类空间探索仍然存在许多挑战。最大的问题之一是机组人员的可靠空气,水和食物供应。生物加成生命支持系统(BLSS)旨在使用生物反应器来克服这些挑战,以进行废物处理,空气和水的振兴以及粮食生产。在这篇综述中,我们着重于空间中的微生物光合生物过程和光生反应器,这些生物反应器允许去除有毒二氧化碳(CO 2)以及产生氧气(O 2)和可食用的生物量。本文概述了过去30年中BLSS项目的光生反应器和前体工作(在地面和太空中)进行的实验。我们讨论了不同的硬件方法以及对这些生物反应器测试的生物。尽管许多实验在地面上显示出成功的生物空气振兴,但对太空环境的转移远非微不足道。例如,在微重力条件下,气液转移现象不同,这不可避免地会影响培养过程和氧气产生。在这篇综述中,我们还强调了这项研究场中缺少的专业知识,为未来的空间光生反应器开发铺平了道路,我们指出了未来的实验,以掌握功能齐全的BLS的挑战。
本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要。大声液体提供了一种独特的手段来操纵细胞和液体,以在生物医学科学和转化医学中进行广泛应用。但是,由于多种因素,包括设备对设备变化,手动操作,环境因素,样本变异性等因素,标准化并保持当前流动性设备和系统的出色性能是一项挑战。在这里,为了应对这些挑战,我们提出了“智能的Acoustofluidics” - 一种自动化系统,涉及Acoustofluidic设备设计,传感器融合和智能控制器集成。作为一种概念证明,我们开发了基于人类脑器官培养物的基于智能的大量流体分解器。我们的迷你比较反应器由三个组成部分组成:(1)通过声学螺旋相位涡流方法进行无接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像机,以及(3)基于增强学习的基于增强的学习控制器,用于旋转操纵的闭环调节。在训练基于增强学习的控制器和实验环境中,我们的迷你比率可以实现良好板中转子的自动旋转。重要的是,无论转子重量,液体体积和工作温度的波动如何,我们的迷你比较反应器都可以对转子的旋转模式,方向和速度进行良好的控制。此外,我们证明了我们的迷你比较反应器可以在长期培养过程中稳定地保持脑官的旋转速度,并增强脑官的神经分化和均匀性。与当前的Acoustofluidics进行了比较,我们的智能系统在自动化,鲁棒性和准确性方面具有出色的性能,突出了新型智能系统在生物电子学和微功能实验中的潜力。
还制定了与微反应堆运输相关的美国运输部 (DOT) 和美国核管理委员会 (NRC) 法规的详细时间表。这些时间表仿照国际原子能机构 (IAEA) 具体安全指南第 33 号《IAEA 放射性物质安全运输条例规定时间表》中的类似时间表制定。这些时间表集中于裂变材料包裹和 B 型包裹的运输,它们分别最适用于辐照前后微反应堆及其燃料的运输。还根据 IAEA 法规制定了军用飞机空运裂变材料和 B 型包裹的时间表以及空运 C 型包裹的时间表。