靶向蛋白质的降解是一种新兴而有希望的治疗方法。降解的特异性和细胞稳态的维持是由E3泛素连接酶和脱脂信号(称为Degrons)之间的相互作用确定的。人类基因组编码超过600个E3连接酶;但是,到目前为止,仅确定了少数目标的DEGRON实例。在这项研究中,我们引入了DeGronmd,这是一个开放知识库,旨在研究DEGRON,它们相关的功能障碍事件和药物反应。我们驱逐出来,degrons在进化上是保守的,并且倾向于在蛋白质翻译修饰部位附近发生,尤其是在无序结构和较高溶剂可访问性的区域。通过模式识别和机器学习技术,我们构建了跨人类蛋白质组的降解景观,产生了超过18,000个新的脱脂剂,用于靶向蛋白质降解。此外,DEGRON的功能障碍会破坏降解过程,并导致蛋白质的异常积累。此过程与各种类型的人类癌症有关。基于由体细胞突变引起的估计表型变化,我们从系统地进行了量化并评估突变对pan-Canters degron功能的影响;这些结果有助于建立有关人类降解的全球突变图,其中包括89,318个可起作用的突变,这些突变可能引起降解和破坏蛋白质降解途径的功能障碍。多组合综合分析揭示了与功能性脱粒突变相关的400多个耐药性事件。degronmd,可在https://bioinfo.uth.edu/degronmd上访问,是探索生物学机制,推断蛋白质降解以及在Degron上的药物发现和设计的有用资源。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要展开的蛋白质反应(UPR)是一种细胞自主压力反应,旨在恢复稳态,这是由于内质网(ER)中错误折叠蛋白的积累。病毒经常劫持宿主细胞机制,导致ER中错误折叠的蛋白质积累。细胞自主UPR是感染细胞对这种压力的直接反应,旨在通过停止蛋白质翻译,降解错误折叠的蛋白质以及激活增加分子伴侣产生的信号通路来恢复正常功能。细胞 - 非摩托菌MOUS UPR涉及UPR信号从最初压力的细胞传播到缺乏压力源的无重大细胞。尽管病毒是已知的细胞自主UPR调节剂,但最近的进步强调,单个自主UPR在阐明局部感染如何引起全身作用方面起着至关重要的作用,从而有助于疾病症状和进展。另外,通过利用细胞 - 非自治UPR,病毒制定了新的策略来建立促病毒状态,从而促进病毒扩散。本综述讨论了通过超越细胞自主到非自主过程的细胞自主过程和诱导者,播种者和UPR信号接收器的机械细节,从而扩大了对UPR在病毒感染和疾病进展中的作用的理解。
摘要◥目的:我们试图识别出晚期非小胞菌患者(NSCLC)WHOACHIEVELONG-TERMRESPONSE(LTR)到免疫检查点抑制剂(ICI)的特征,这些特征与短期响应(STR)的预测特征可能有所不同。实验设计:我们对2011年至2022年之间用ICI治疗的晚期NSCLC患者进行了多中心回顾性分析。ltr和str分别定义为响应≥24个月和响应<12个月。肿瘤编程的死亡配体1(PD-L1)表达,肿瘤突变负担(TMB),下一代测序(NGS)和全异位测序(WES)数据,以识别与STR和非LTR相比,在达到LTR的患者中富集的特征。结果:在3,118例患者中,有8%的LTR和7%的STR,5年总生存率(OS)为81%和18%
1 Inserm U1135,CIMI,免疫学,AP-HP,Pythianship Piti和三和三,Sorbonne Universit和F-75013法国巴黎; baptiste.abbar@aphp.fr(B.A.); baptiste.fouquet@aph.fr(B.F.); alic.rousseau@upmc.fr(A.R.); assia.samri@upmc.fr(A.S。); brigitte.authan-ext@ap.f。); 2 Inserm umr_s 1136,Epid的皮埃尔·路易(Pierre Louis of the Myologians and Saint and Saint),Sorbonne Universit ET,F-75013法国巴黎; cat.soulie@serm.fr(C.S.);核环。3 GRC#04 Theranoscan,《卧和胸科学》的一部分,AP-HP,Tenon,Sorbonne Universit和F-75020 Paris,Paris,Paris的诞生;陆军); jacques.cadranel@aphp.fr(J.C。)羔羊。 Dominique.Costagliolari(D.C.)5密封区,AP-HP,Pittal Piti和Salp是三个和三个,Sorbonne Universit,以及法国F-75013 Paris。); jean-phhilippe.spano@ap.fr(J.-P.S.)CHIVA-2调查人员。•24 Oncovirim,研究组。6 Inserm U1175,蒙彼利埃大学医院中心传染病系,蒙彼利埃大学,法国蒙彼利埃大学,法国蒙彼利埃; a-makinson@chu-montpellier.fr 7dé临床术语的信息,AP-HP,hôpitalpitié-salpêè,索邦大学,法国F-75013,法国巴黎; sylvain.choquet@aphp.fr 8 dé肺炎信息,中心医院迪尔大学,法国Toulouse F-31000; mazieres.j@chu-toulouse.fr 9 D肺病学,AP-HP,H pital Bichat-Claude Bernard,F-75018法国巴黎; solenn.brosseau@aphp.fr 10détement传染病,AP-HP,h的pital piti piti-storting,索邦大学,法国F-75013,法国巴黎; Christine.katlama@aphp.fr 11dé临床免疫学信息,AP-HP,h。pital bic tre,巴黎 - 萨克莱大学,F-94270,F-94270 The Kremlin Bic bic Tre,法国; Olivier.lambotte@aphp.fr 12 Inserm,CEA,病毒,自动穆纳斯,血液学和细菌疾病的免疫学中心(IDMIT/IMVA-HB),UMR1184,UMR1184,UMR1184,UNIVEMENT PARIS-SACACLAY,F-94270 F-94270 LEKEMLIN BIC BIC TRE,FRANCE TRE,FRANCERATION * MARINE. MARINE. MARINE合作陪同)是独立的,非培养的研究人员。
Ekaterina Khaleva 1,Anna Rattu 1,Chris Brightling 2,Andrew Bush 3,Annaud Bourdin 4,Arnaud Bourdin 4,Apostolos Bossios 5,Kian Fan Fan Chung 6,Rekha Chaudhuri 7,Courtney Coleman 8,Courtney Coleman 8,Ratko Djukanovic 1,9 11,Atul Gupta 12,Eckard Hamelmann13,Gerard H. Koppelman 14,15,ErikMelén16,Vera Mahler 17,Vera Mahler 17,Paul Seddon 18,Florian Singer 19,20,Celeste Porsbjerg 21,Valeria Ramiconi22,Valeria Ramiconi22,Franca Rusconi 23,Valanca Rusconi 23,Valanca rusconi Yasinnna Yasinska in 3 on 33反应工作组的哮喘定义1临床和实验科学与人类发展与健康,医学院,南安普敦大学,英国南安普敦。2英国莱斯特大学莱斯特NIHR BRC肺部健康研究所。 3儿童健康中心,国家心脏和肺部和肺部,帝国学院,英国伦敦皇家布罗姆普顿医院。 4法国蒙彼利埃大学的Phymedexp,法国蒙彼利埃。 5瑞典斯德哥尔摩卡罗林斯卡大学医院和医学系呼吸医学和过敏系,瑞典。 6英国伦敦伦敦帝国学院国家心脏和肺部。 7英国格拉斯哥大学感染,免疫和炎症研究所。 8英国谢菲尔德的欧洲肺基金会。 9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。 10 Adept Biologica Consulting Limited,英国伦敦。 英国伦敦国王学院医院儿科呼吸医学系12。2英国莱斯特大学莱斯特NIHR BRC肺部健康研究所。3儿童健康中心,国家心脏和肺部和肺部,帝国学院,英国伦敦皇家布罗姆普顿医院。 4法国蒙彼利埃大学的Phymedexp,法国蒙彼利埃。 5瑞典斯德哥尔摩卡罗林斯卡大学医院和医学系呼吸医学和过敏系,瑞典。 6英国伦敦伦敦帝国学院国家心脏和肺部。 7英国格拉斯哥大学感染,免疫和炎症研究所。 8英国谢菲尔德的欧洲肺基金会。 9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。 10 Adept Biologica Consulting Limited,英国伦敦。 英国伦敦国王学院医院儿科呼吸医学系12。3儿童健康中心,国家心脏和肺部和肺部,帝国学院,英国伦敦皇家布罗姆普顿医院。4法国蒙彼利埃大学的Phymedexp,法国蒙彼利埃。5瑞典斯德哥尔摩卡罗林斯卡大学医院和医学系呼吸医学和过敏系,瑞典。 6英国伦敦伦敦帝国学院国家心脏和肺部。 7英国格拉斯哥大学感染,免疫和炎症研究所。 8英国谢菲尔德的欧洲肺基金会。 9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。 10 Adept Biologica Consulting Limited,英国伦敦。 英国伦敦国王学院医院儿科呼吸医学系12。5瑞典斯德哥尔摩卡罗林斯卡大学医院和医学系呼吸医学和过敏系,瑞典。6英国伦敦伦敦帝国学院国家心脏和肺部。 7英国格拉斯哥大学感染,免疫和炎症研究所。 8英国谢菲尔德的欧洲肺基金会。 9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。 10 Adept Biologica Consulting Limited,英国伦敦。 英国伦敦国王学院医院儿科呼吸医学系12。6英国伦敦伦敦帝国学院国家心脏和肺部。7英国格拉斯哥大学感染,免疫和炎症研究所。8英国谢菲尔德的欧洲肺基金会。 9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。 10 Adept Biologica Consulting Limited,英国伦敦。 英国伦敦国王学院医院儿科呼吸医学系12。8英国谢菲尔德的欧洲肺基金会。9 NIHR南安普敦生物医学研究中心,英国南安普敦的南安普敦NHS基金会信托基金会。10 Adept Biologica Consulting Limited,英国伦敦。英国伦敦国王学院医院儿科呼吸医学系12。11生物学,医学和健康学院,生物科学学院,曼彻斯特大学曼彻斯特大学曼彻斯特大学曼彻斯特大学生物医学研究部,曼彻斯特大学NHS大学NHS基金会信托基金会,免疫和呼吸医学科,曼彻斯特大学,曼彻斯特曼彻斯特曼彻斯特,英国曼彻斯特。 13个儿童中心伯特利,德国比勒菲尔德大学儿科系。 14格罗宁根大学,大学医学中心格罗宁根,比阿特里克斯儿童医院,小儿肺病学和小儿过敏症系,荷兰格罗纳根。11生物学,医学和健康学院,生物科学学院,曼彻斯特大学曼彻斯特大学曼彻斯特大学曼彻斯特大学生物医学研究部,曼彻斯特大学NHS大学NHS基金会信托基金会,免疫和呼吸医学科,曼彻斯特大学,曼彻斯特曼彻斯特曼彻斯特,英国曼彻斯特。13个儿童中心伯特利,德国比勒菲尔德大学儿科系。 14格罗宁根大学,大学医学中心格罗宁根,比阿特里克斯儿童医院,小儿肺病学和小儿过敏症系,荷兰格罗纳根。13个儿童中心伯特利,德国比勒菲尔德大学儿科系。14格罗宁根大学,大学医学中心格罗宁根,比阿特里克斯儿童医院,小儿肺病学和小儿过敏症系,荷兰格罗纳根。14格罗宁根大学,大学医学中心格罗宁根,比阿特里克斯儿童医院,小儿肺病学和小儿过敏症系,荷兰格罗纳根。
Valentin Blideanu,Clement Besnard Vauterin,David Horvath,Benoit Lefebvre,Francesc Salvat-Pujol等。来自光核反应的中子光谱:蒙特 - 卡洛粒子转运模拟代码的性能测试。物理研究中的核仪器和方法B:梁与材料和原子的相互作用,2024,549,165292(14 p。)。10.1016/j.nimb.2024.165292。CEA-04477575
扰动生物学是一种建模定量细胞行为并理解详细疾病机制的有力方法。然而,癌细胞系对扰动的大规模蛋白质反应资源不可用,从而导致临界知识差距。在这里,我们使用逆相蛋白阵列在> 12,000个癌细胞系样品中生成了〜170种药物化合物的〜210个临床相关蛋白的扰动表达谱。我们表明,整合扰动的蛋白质反应信号提供了对耐药性的机理见解,增加了药物敏感性的预测能力,并有助于识别有效的药物组合。我们构建了“蛋白质 - 药物”连接性的系统地图,并为社区使用开发了一个用户友好的数据门户。我们的研究提供了丰富的资源来研究癌细胞的行为和治疗反应的依赖性,从而实现了广泛的生物医学应用。
摘要:后生动物已经制定了保护自己免受致病攻击的策略。这些保存的机制构成了由先天和适应性反应组成的免疫系统。在两种类型中,先天免疫系统涉及快速反应的激活。NF-κB信号通路在感染过程中被激活,并导致及时控制的免疫反应基因的表达。然而,当不符合措施时,NF-κB途径的激活可能是有害的。他们的调节对于防止炎症性疾病或癌症的发展是必要的。介导昆虫和哺乳动物中免疫机制的NF-κB途径的相似性使果蝇Melanogaster成为研究先天免疫反应和学习一般机制的合适模型,这些模型也与人类相关。在这篇综述中,我们总结了中央NF-κB轨道的动态调节的了解,并详细介绍了IMD途径的分子水平。我们报告了核蛋白Akirin在NF-κB调节中的作用。果蝇模型的使用允许理解该中央NF-κB途径的细节调节。
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。