版权所有 © 2020 Wutz 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确署名原始作品。
。CC-BY 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
Small-scale locations Low-level visual features Large-scale locations Alexnet layers Shots MFCC Speech Events Low-level visual features Small-scale locations Large-scale locations MFCC Speech Events Speech Low-level visual features Alexnet layers Shots Small-scale locations Large-scale locations MFCC Events Events Low-level visual features Alexnet layers Shots Small-scale locations Large-scale locations MFCC语音
在秋天,米皮姆(Mipim)发起了第二个米皮姆挑战者计划,令人鼓舞的是30岁及以下的建立环境专业人员,为该行业带来了新的想法和新观点。通过论文竞赛选出的16个挑战者将被邀请向Mipim 2025年戛纳电影节的主要房地产领导者介绍他们的想法。提交在MIPIM网站上开放,直到2024年10月25日。获奖者将于12月宣布。MIPIM是世界上首要的房地产活动,它吸引了国际房地产行业各个部门最有影响力的参与者。代表90个国家 /地区的20,000多名代表参加了MIPIM 2024,其中包括全球前100名投资经理中的70%,管理超过4万亿欧元的资产。
背景:微度是短暂的睡眠实例,导致双眼的反应性以及部分或全部延伸的闭合。微骨会带来毁灭性的后果,尤其是在跨性别部门。研究目标:关于微渗的神经特征和潜在机制的问题。这项研究旨在更好地了解微骨的生理底物,这可能会使人们对现象有更好的了解。方法:分析了一项早期研究的数据,涉及20个健康的非腿部剥夺受试者。每个会话持续50分钟,并需要受试者执行2D连续的视觉运动跟踪任务。同时数据收集包括跟踪性能,Eye-Video,EEG和FMRI。一个人类专家在视觉上检查了每个参与者的跟踪性能和视频录音,以识别微质量。我们的兴趣是微度≥4-S的持续时间,使我们总共有10个受试者的事件。微填布事件分为四个2-S段(前,开始,开始,结束和帖子)(中间,开始和末端段之间存在差距,对于微渗> 4 s),然后通过检查以前的段来分析每个片段,通过检查源代源的eeg eeg power in delta,delta,theta,theta,alpha,alpha,beta,beta,beda,beda,beda,beda,beda,beda,beda sega sega sega sega sega,beda,beda,beda sega sega sega be n of seg eeg pown。结果:theta和alpha频段的EEG功率增加了微骨前和开始之间。在微渗的起点和末端之间,三角洲,beta和伽马频段的功率也增加。相反,在三角洲和阿尔法频段的微度末端和柱头之间的功率降低了。这些发现支持三角洲,theta和alpha频段中的先前发现。然而,以前尚未报道Beta和伽马频段的功率增加。结论:我们认为,在微观休息期间增加的高频活性反映了无意识的“ cogni tive”活性,旨在重新建立在积极任务中入睡后重新建立意识。
在各种实验环境中,肌电图 (EMG) 信号已用于控制机器人。基于 EMG 的机器人控制需要控制的内在参数,这使得用户很难理解输入协议。当未提供适当的输入时,系统的响应时间会发生变化;因此,无论实际延迟如何,都应调查用户的主观延迟。在本研究中,我们调查了延迟的主观感知对大脑激活的影响。在受试者使用 EMG 信号控制机械手时进行脑部记录,这需要基本的处理延迟。我们使用肌肉协同作用来执行机械手的抓握命令。在通过抓握手来控制机器人后,每次试验都会应用四个额外延迟持续时间(0 毫秒、50 毫秒、125 毫秒和 250 毫秒)之一,并指示受试者回答延迟是自然的、额外的还是他们不确定。我们根据回答(“确定”和“不确定”)比较了大脑活动。我们的结果表明顶叶的 θ 波段存在显著的功率差异,并且这个时间范围包括受试者感觉不到延迟的间隔。我们的研究提供了重要的见解,在构建自适应系统并评估其可用性时应考虑这些见解。
1. 德国神经退行性疾病中心 (DZNE),德国哥廷根 2. 伯恩斯坦计算神经科学中心 (BCCN),德国柏林 3. 马克斯普朗克人类认知与脑科学研究所 (MPI CBS),德国莱比锡 4. 莱布尼茨神经生物学研究所 (LIN),德国马格德堡 5. 德国心理健康中心 (DZPG),哈勒-耶拿-马格德堡合作站点 6. 适应性和适应不良脑部干预与研究中心 心理潜在回路
多发性硬化症(MS)是一种神经炎症性疾病,其特征是髓磷脂(脱髓鞘)丧失,并在一定程度上是随后的髓磷脂修复(Remereliation)。为了更好地了解降低和再生的病理机制,并监测旨在再生髓磷脂的疗法的疗效,提供髓磷脂无创可视化的技术是有必要的。磁共振(MR)成像长期以来一直处于可视化髓磷脂的努力的最前沿,但直到最近才能访问由髓磷脂脂质蛋白双层本身产生的快速衰减的共振信号。在这里,我们表明,双层的直接MR映射可从MS患者的脑组织中产生高度特异性的髓磷脂图。此外,发现双层信号行为的检查揭示了正常表现的白色和灰色物质的病理改变。这些结果表明,髓鞘双层映射技术的体内实施有望,并在基础研究,诊断,疾病监测和药物开发中进行了预期应用。
关于人工智能在教学、学习和评估方面的优势,使用包括沉浸式学习体验在内的模拟已被提倡作为一项重要优势。同样,教育工作者也观察到,人工智能通过以以前不可能的方式定制内容和体验,为个性化教育提供了一种强大的手段。例如,可以密切监控学生对任务的参与度,并在最需要反馈时以特定方式提供适当的反馈。关于潜在的缺点,提出了以下问题:当学生可以使用人工智能工具轻松地为家庭作业撰写文本时,学习会变成什么样?如何衡量学生的理解程度,以确保测量的是学习,而不是技术的残余?
战略风险登记册旨在反映对战略实施构成的威胁(战略本身会识别这些威胁),对 FSS 而言最重要的风险是那些可能影响战略目标和关键目标实施的风险。ELT 负责识别与战略中确定的风险领域相关的战略风险(FSS 战略 2021-2026)