这五个目标相互支持,如下所示。多元化任命的核心流程是创建多元化申请人的强大渠道(目标 2),然后公平对待这些申请人,让他们在公开透明的招聘实践中感受到被重视(目标 3)。董事会本身的文化和实践对于这些流程的成功至关重要,并确保被招募的人员能够为其加入的董事会提供最大价值并获得积极的体验:因此需要让董事会参与进来(目标 4)。如果没有部长、主席、高级公务员和其他高级领导人的强有力领导,这一切都不会发生,尤其是文化的改变(目标 5)。所有这些行动都需要高质量、广泛共享的数据的指导和激励(目标 1)。
皮质神经元种群的尖峰活性通过少数人口范围的协方差模式(“潜在动力学”)很好地描述。这些潜在动力学在很大程度上是由确定局部场电位(LFP)产生的相同相关的突触电流驱动的。然而,潜在动力学和LFP之间的关系仍然在很大程度上尚未探索。在这里,我们为灵长类动物感觉运动皮层的三个不同区域表征了这种关系。潜在动力学和LFP之间的相关性是频率依赖性的,并且在各个区域之间有所不同。但是,对于任何给定的区域,这种关系在各个行为之间保持稳定:在主电动机和前皮层中,LFP-LANTENT动力学相关曲线在运动计划和执行之间非常相似。LFP与神经群体潜在动力学之间的这些强大关联有助于弥合使用两种记录的行为神经相关性的研究丰富的研究。
先前的内部状态和环境的感觉输入。这个过程被称为35“分布式计算” [2,3],在大脑的背景下,被认为是认知和36个havior的基础。可以通过将“信息动力学”分为三部分37 [3]:信息存储(神经元的过去活动都会告知其未来的程度,例如LTP 38或LTD)[4],信息传输(来源神经元的过去的程度告诉目标神经元的39未来,例如突触通信)[5,6]和信息修改(即“非线性”计算40,其中神经元将不同的信息流集成到比零件总和更大的事物中)41 [7,8,9,10]。可以使用信息理论[11]进行正式化这三个动力学(请参阅秒1.1)。42先前使用信息理论研究记录的神经元网络中信息动态的先前工作43发现,在开发过程中修改信息变化的能力[10]以及在相同的发育44个窗口中,特定的信息传输模式“锁定” [12]。此外,45个信息修改的能力是在网络的神经元上分布的。集中在高46度,富俱乐部神经元中[13,14,15]。信息传输[16]已应用于各种神经和47个神经元记录(有关综合综述,请参见[5]),并允许研究人员估算有效的网络48相互作用的神经元模型。特定动态服务的目的仍然很困难。最后,主动信息存储为刺激响应49和视觉处理系统中的偏好提供了见解[4]。50尽管在这个领域进行了大量分析,但信息动态如何与行为相关的问题仍然不清楚,因为在神经文化中,许多上述工作都是在神经文化中进行的52,而不是与复杂环境相互作用的行为生物体相反。因此,提出了信息动态和行为之间的链接53(例如例如,尽管有很好的文献记录了协同信息动态,但仍不清楚它们在认知和行为相关的信息处理中扮演什么(如果有)角色,或者56仅仅是统计的Epiphenomena。为此,我们研究了信息动力学和由此产生的57个效率网络结构,同时记录了三个猕猴的额叶 - 顶端抓地力网络的最多三个皮质区域的神经种群。在录音过程中,猴子执行了59个延迟的感觉运动转换任务,涉及处理不同的视觉提示,制备和60个不同的掌握类型的记忆以及这些掌握类型的执行。(有关详细信息,请参见[17]。使用61这些数据,我们可以估计神经元级的活动信息存储,信息传输和协同62在不同的认知和行为状态中的信息修改,从而使我们能够直接评估信息动力学和复杂行为之间的相关性63个分离。68我们假设不同的行为状态和握把变化将与不同的69个信息动态模式相关。此外,通过推断传输熵64网络,我们可以应用网络科学[18,19]的技术来检查行为的变化如何改变65网络中神经元之间的有效连通性模式。最后,我们可以结合这两条66行分析,以探索神经元如何在网络夫妇中定位特定任务以揭示67个单个神经元在信息处理中的局部作用。特别地,我们假设需要高70度的主动处理的行为状态(例如与其他状态相比,识别行为提示,准备和执行动作)71将显示更复杂的活动和独特的网络结构(例如期望72固定)。我们的发现与这些假设是一致的:不同的行为状态与全球效果网络结构的明显相关性相关联73相关联,尤其是74的运动与系统的总体信息增加,并且在系统中增加了75个信息,并在协同信息处理的量中增加了75。对于两种不同的握把类型的每一种,这些网络范围的活动模式都是不同的76,并且可以根据77
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)
社会经济地位 (SES) 与大脑结构相关,鉴于长期以来观察到的 SES 与认知能力和健康之间的关系,这种关系备受关注。然而,主要问题仍未得到解决,尤其是这种关系背后的因果关系模式。在一项前所未有的大规模研究中,我们评估了遗传和环境对神经解剖学 SES 差异的贡献。我们首先在多个大脑区域(皮层和皮层下)建立强大的 SES-灰质关系。这些区域相关性被解析为主要是遗传因素和可能由环境引起的因素。我们表明,遗传效应在某些区域(前额叶皮层、岛叶)比其他区域更强。在遗传效应较小的区域(小脑、颞侧),环境因素可能会产生影响。我们的研究结果表明,遗传和环境因素之间存在复杂的相互作用,这些因素影响着 SES-大脑关系,并可能最终为政策提供相关的见解。
社会经济地位 (SES) 与大脑结构相关,鉴于长期以来观察到的 SES 与认知能力和健康之间的关系,这种关系备受关注。然而,主要问题仍未得到解决,尤其是这种关系背后的因果关系模式。在一项前所未有的大规模研究中,我们评估了遗传和环境对神经解剖学 SES 差异的贡献。我们首先在多个大脑区域(皮层和皮层下)建立稳健的 SES-灰质关系。这些区域相关性被解析为主要是遗传因素和可能由环境引起的因素。我们表明,遗传效应在某些区域(前额叶皮层、岛叶)比其他区域更强。在遗传效应较小的区域(小脑、颞侧),环境因素可能会产生影响。我们的研究结果表明,遗传和环境因素之间存在复杂的相互作用,这些因素影响着 SES-大脑关系,并可能最终为政策提供相关的见解。
Cardiomyocyte mechanical memory is regulated through the talin interactome and DLC1 dependent regulation of RhoA Emilie Marhuenda 1* , Ioannis Xanthis 1* , Pragati Pandey 1 , Amar Azad 2 , Megan Richter 2 , Davor Pavolvic 2 , Katja Gehmlich 2,3 , Giuseppe Faggian 4 , Elisabeth Ehler 5,James Levitt 5,Simon Ameer-Beg 5,Thomas Iskratsch 1 1 1 1工程与材料科学学院,伦敦皇后大学,英国皇后大学,英国皇后大学2伯明翰大学心血管科学研究所,伯明翰大学B15 2TT,英国伯明翰大学3 2TT,英国3,心血管疾病医学司3意大利维罗纳市维罗纳(Verona)的CardioChirurgia discorte Ospedaliero discorte and Angebolic Medicine and Sciences,英国伦敦国王学院(King's College)的心血管和代谢医学与科学学院 *同等贡献通信:t.iskratsch@qmul.ac.ac.ac.ac.ac.ac.uk摘要机械特性是许多在健康或疾病方面的生物学过程。同样,在心脏中,机械信号越来越清楚地参与了疾病进展。心肌细胞通过整合素和相关蛋白(包括机械敏感的蛋白塔林作为积分成分),将其环境的机械性能感知到其环境的机械性能。我们以前的工作表明塔林张力的不同模式,具体取决于细胞外基质刚度。在这里,我们想研究这如何导致下游机械转导变化,从而进一步影响心肌细胞表型。这表明了机械记忆,我们在小鼠心脏中进一步证实了它。机械信号再次变化,包括例如在光漂白(FRAP)实验后结合免疫沉淀和荧光恢复,我们确定塔林相互作用的蛋白质DLC1,RIAM和PAXILLIN各自优先在特定的细胞外基质刚度下与Talin结合,即使在缺乏张力的情况下也可以保留这种相互作用。机械记忆通过相关的激酶途径调节。使用Lovtrap系统的光遗传学实验证实了各个蛋白质之间的直接竞争,该蛋白再次通过磷酸化而改变。DLC1以刚度依赖性的方式调节RhoA活性,而DLC1的损失和过表达导致肌原纤维混乱。一起研究表明,将机械信息烙印到塔林 - 相互作用中的一种机制,从而对心脏健康和疾病产生了影响。引言心肌细胞是心脏中的收缩细胞,其适当功能通过包括电气,化学和机械信号1的复杂信号网络进行调节。压力和从心脏充满血液中伸展,但同样重要的是感应额外的细胞基质的刚度。后者在开发过程中正在发生变化。重要的是,在衰老和心脏病中,它也正在发生变化,在这种疾病中,通过赖氨酸氧化酶(LOX)(LOX)和LOX酶的胶原蛋白过度交联,可以导致心脏僵硬,心肌细胞表型变化,心脏故障,而保留的射血分数(HFPEF)(HFPEF)2-9。肌营养不良蛋白糖蛋白复合物)和/或信号传导10。心肌细胞通过所谓的Costameres,肌肉Z-DISC水平的肋骨状结构,含有整联蛋白以及其他多分子络合物(例如) 心肌细胞整联蛋白粘附具有许多蛋白质,这些蛋白质在局灶性粘连中也有许多蛋白质,包括附着在细胞质肌动蛋白上的Talin和Vinculin。心肌细胞通过所谓的Costameres,肌肉Z-DISC水平的肋骨状结构,含有整联蛋白以及其他多分子络合物(例如心肌细胞整联蛋白粘附具有许多蛋白质,这些蛋白质在局灶性粘连中也有许多蛋白质,包括附着在细胞质肌动蛋白上的Talin和Vinculin。
摘要 皮质神经元群体的脉冲活动可以通过少数群体范围内的协方差模式的动态很好地描述,我们将其激活称为“潜在动态”。这些潜在动态主要由电路中相同的相关突触电流驱动,这些突触电流决定了局部场电位 (LFP) 的产生。然而,潜在动态和 LFP 之间的关系在很大程度上仍未得到探索。在这里,我们描述了灵长类动物在伸手过程中感觉运动皮层三个不同区域的这种关系。潜在动态和 LFP 之间的相关性依赖于频率,并且因区域而异。然而,对于任何给定区域,这种关系在整个行为过程中保持稳定:在每个初级运动皮层和运动前皮层中,LFP-潜在动态相关性曲线在运动计划和执行之间非常相似。LFP 和神经群体潜在动态之间的这些强大关联有助于弥合使用任一类型记录报告行为神经相关性的大量研究。
摘要 期望塑造了我们的音乐体验。然而,听众形成旋律期望的内部模型仍然存在争议。期望是源于格式塔原则还是统计学习?如果是后者,长期经验是否起着重要作用,还是短期规律就足够了?最后,多长的情境可以影响情境期望?为了回答这些问题,我们向人类听众展示了西方古典音乐的各种自然主义作品,同时使用 MEG 记录神经活动。我们使用各种音乐计算模型(包括最先进的变压器神经网络)量化了音符级的旋律惊喜和不确定性。时间分辨回归分析显示,额颞传感器上的神经活动跟踪旋律惊喜,特别是在音符开始后约 200 毫秒和 300-500 毫秒内。这种神经惊喜反应与感觉声学和适应效应无关。神经惊喜最好由结合长期统计学习的计算模型来预测,而不是简单的格式塔式原则。然而,有趣的是,惊喜主要反映了少于十个音符的短距离音乐环境。我们在公开的 EEG 数据集中展示了我们新颖的 MEG 结果的完整复制。总之,这些结果阐明了在自然音乐聆听过程中塑造旋律预测的内部模型。
1澳大利亚2109年悉尼麦格理大学医学,卫生与人类科学学院生物医学科学系; john.park4@hdr.mq.edu.au(J.J.P. ); Russell.diefenbach@mq.edu.au(R.J.D.) 2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L. ); Richard.scolyer@health.nsw.gov.au(R.A.S. ); matteo.carlino@sydney.edu.au(M.S.C。) 3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。 : +61-2-9850-2762†两位作者都同样贡献了高级作者。1澳大利亚2109年悉尼麦格理大学医学,卫生与人类科学学院生物医学科学系; john.park4@hdr.mq.edu.au(J.J.P.); Russell.diefenbach@mq.edu.au(R.J.D.)2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L. ); Richard.scolyer@health.nsw.gov.au(R.A.S. ); matteo.carlino@sydney.edu.au(M.S.C。) 3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。 : +61-2-9850-2762†两位作者都同样贡献了高级作者。2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L.); Richard.scolyer@health.nsw.gov.au(R.A.S.); matteo.carlino@sydney.edu.au(M.S.C。)3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。: +61-2-9850-2762†两位作者都同样贡献了高级作者。