这不是因为我们已经用完了数据,否则我们已经用完了所有互联网!我们的问题通常不是数量,而是相关的。合成数据还可以消除通常与现实数据相关的风险,例如偏见或隐私问题。由于缩放问题,我们还创建了合成数据。我们可能希望对天气事件进行建模,并且极端天气记录可能不足以在现实世界数据集中表示整体的百分比。同样适用于用于医学分析的建模系统。,当稀有疾病特别稀疏(占普通人群的一部分)时,可能很难为稀有疾病建模。理想的数据有效地被绝大多数人淹没了。偏见是AI建模的另一个问题,特别是算法偏差。这是数据可能反映历史不平等现象或文化偏见的地方,并散布了抽样错误。使用综合数据,我们可以公平地重新平衡数据集 - 当然,我们可以正确地做到这一点。我们还创建了有隐私问题的合成数据集,例如数据可能具有个人身份特征。匿名数据可以是
进行准确的亚季节预测仍然是科学界的挑战(White等人2022)。中期时间范围位于中期每日天气预报和季节性预测之间(Vitart等人,2017年)。为了改善季节前的前提,已经做出了巨大的努力来理解不同的过程,相互作用和可预测性的来源(Domeisen等人。,2022; Robertson&Vitart,2019年; White等。,2022)。中季可预测性与大气,海洋和土地过程有关(Robertson&Vitart,2019年)。亚季节范围最重要的预性能力来源如下:Madden-Julian振荡(Lau&Waliser,2011; Vitart等人,2017年),由于其对热带和外界全球天气的影响(Cassou,2008; Deflorio等人,2019年);土壤水分(Koster等人,2010年),因为这会影响较低的大气温度和局部预言(Domeisen等人,2022; Wei&Dirmeyer,2019年);雪覆盖(Lin&Wu,2011年),尤其是极地和中纬度地区(Penny等人,2019年);海洋条件(Woolnough等人,2007年),显示出在某些地区增强降水和温度预测的能力(Subramanian等人,2019年);以及对降水和温度的影响滞后的strato-everhere(Butler等人,2019年)。,2020年;纽曼等人。,2003年; Rashid等。,2011年; Vitart,2014年)。,2022; Mariotti等。改善亚季节预测还与模型物理的改善有关,通过纳入了地球系统的辅助过程和许多组成部分,例如海洋和海冰,以及在与前面提到的可预测性不同来源之间相互作用相关的初始条件下的不确定条件(Merryfield等。下午预测变得更加准确(Robertson&Vitart,2019年)。NWP的预测在过去几十年中有所改善(Magnusson&Källén,2013年)。NWP模型已从概率的方法转变为概率方法。的确,集合(概率)预测通过为预测变量产生一组概率来帮助捕捉大气混乱(Palmer,2000)。因此,一个概率的预测通过更大的结合预测提供了最有可能的情况和与之相关的不确定性,从而可以更自信地验证亚季节预测。由于上述所有努力,亚季节合奏预测已经展示了其潜在的,以提供有价值的预测和早期对重大气候和天气事件的警报(Domeisen等人,2018年; Robertson&Vitart,2019年)。这些
摘要。相关的随机性在于有效的现代安全多方计算(MPC)协议的核心。生成MPC在线阶段协议所需的相关随机性的成本通常构成整体协议中的瓶颈。Boyle等人发起的伪随机相关发生器(PCG)的最新范式。(CCS'18,Crypto'19)为此问题提供了一个吸引人的解决方案。在草图中,为每个方提供了一个短的PCG种子,可以将其局部扩展为长相关字符串,从而满足目标相关性。在各种类型的相关性中,有忽略的线性评估(OLE),这是对算术电路的典型MPC协议的基本和有用的原始性。旨在有效地生成大量OLE,并应用于MPC协议,我们建立了以下结果:(i)在任何字段F p上,我们为OLE提出了一种新颖的可编程PCG构造。对于kn ole相关性,我们需要O(k log n)通信和O(k 2 n log n)计算,其中k是任意整数≥2。预先的作品要么具有二次计算(Boyle等人crypto'19),或者只能支持大于2的大小的字段(Bombar等人加密23)。(ii)我们扩展了上述OLE结构,以提供任何有限领域的各种相关性。引人入胜的应用之一是用于两方身份验证的布尔乘法三倍的有效PCG。对于kN身份验证的三元组,我们提供的PCG具有O(k 2 log n)位的种子大小。与以前的作品相比,每个作品都有自己的权利。据我们最大的知识,这种相关性以前尚未通过sublrinear沟通和准线性计算实现。(iii)此外,该可编程性可用于多方布尔三元组的有效PCG,因此是第一个具有无声预处理的布尔电路的有效MPC协议。尤其是我们显示的kn m-零件乘数可以在O(m 2 K log n) - 次通信中生成,而最先进的叶面(Asiacrypt'24)需要广播通道,并需要MKN + O(m 2 log kn)钻头通信。(iv)最后,我们提出有效的PCG,用于电路依赖性预处理,矩阵乘法和字符串OTS等。
摘要 —混沌序列伪随机数生成器 (PRNG-CS) 在各种安全应用中引起了关注,尤其是对于流和分组密码、隐写术和数字水印算法。事实上,在所有基于混沌的加密系统中,混沌生成器都起着至关重要的作用并表现出适当的加密特性。由于技术的爆发,以及物联网 (IoT) 技术的快速发展及其各种用例,PRNGs-CS 软件实现仍然是一个未解决的问题,以满足其服务要求。硬件实现是实现 PRNGs-CS 的最旗舰技术之一,目的是为此类应用程序安全提供高性能要求。因此,在这项工作中,我们提出了一种新的基于 PRNGs-SC 的架构。后者由三个弱耦合的离散混沌映射以及分段线性混沌映射 (PWLCM)、斜帐篷和 Logistic 映射组成。混沌系统是在 Xilinx Spartan™-6 FPGA 板上设计的,使用超高速集成电路硬件描述语言 (VHDL)。在 ISE Design Suite 环境中执行的模拟结果证明了我们提出的架构在抵抗统计攻击、吞吐量和硬件成本方面的有效性。因此,基于其架构和模拟结果,所提出的 PRNG-SC 可用于加密应用。
为了应对不断增长的能源需求、日益加剧的气候变化问题以及日益严重的环境恶化,可再生能源的引入已在各个行业和地区获得关注。与此同时,科学家和工程师已经认识到热回收系统在减少能源消耗方面的潜力,从而进一步研究其实际应用。本研究引入了一种创新设计,将涡流发生器集成到同心管热交换器中,用于从为 48 间住宿提供服务的多排水水系统中回收热量。通过评估该设计与各种可再生能源结合使用时的经济和环境影响来评估其可持续性。具体而言,目标是量化在拥有 48 间住宿的建筑的多排水应用中实施此设计所产生的成本和环境节约。数值研究阐明了流速变化对传热、总传热和热增强因子的影响。分析了四种可再生能源输入 - 太阳能、风能、生物质能和水力发电 - 以及一个存储系统(抽水蓄能)。研究表明,设计实施可使冷水温度升高 3.5 至 7.5 ◦ C。此外,太阳能、风能、生物质能、水力发电和抽水蓄能的每日环境节约估计分别为 0.783 欧元、0.339 欧元、0.141 欧元、0.027 欧元和 1.356 欧元。相反,每种相应能源的每日经济节约计算为 3.62 欧元、2.49 欧元、5.05 欧元、3.62 欧元和 6.70 欧元。这项研究强调了所提出的设计在通过环境保护和经济效率促进可持续发展方面的可行性。
基于量子力学的随机数生成器 (RNG) 因其安全性和不可预测性而引人注目,与传统生成器(如伪随机数生成器和硬件随机数生成器)相比。这项工作分析了一类半设备独立的量子 RNG 中,随着希尔伯特空间维数、状态准备子空间或测量子空间的增加,可提取随机性的数量的变化,其中限制状态重叠是核心假设,建立在准备和测量方案之上。我们进一步讨论了这些因素对复杂性的影响,并得出了最佳方案的结论。我们研究了时间箱编码方案的一般情况,定义了各种输入(状态准备)和结果(测量)子空间,并讨论了获得最大熵的最佳方案。对几种输入设计进行了实验测试,并分析了它们可能的结果安排。我们通过考虑设备的缺陷,特别是探测器的后脉冲效应和暗计数来评估它们的性能。最后,我们证明这种方法可以提高系统熵,从而产生更多可提取的随机性。
免责声明前瞻性语句。本演讲包含《证券法》第27A条和《证券交易法》第21E条的含义中的前瞻性陈述,包括但不限于陈述:HIYA快速增长; HIYA的获取将为USANA的2025年调整后的EBITDA增值,净销售增长近30%,同比达到2025财年,使USANA能够吸引更广泛的受众群体,产生长期增长,为USANA利益相关者带来价值,对HIYA的较高的销售和较长期的销售效果提高了USANA和ENTIFE USANA的优势,并提高了USANA的优势,并提高了USANA的优势,并提高了USAMANG的优势,并将USAMANGE的优势提高到USAGANG的效率,并将其带来更高的效率,并将其带入USAGANG的效率,并将其带来更大的效果。创造效率,提高增长和盈利能力,扩展和多样化USANA的收入组合,增强整体客户群,并增强USANA的整体财务状况;利特先生和吉尔曼先生将继续带领赫亚通过其下一阶段的增长。 Hiya将采用明确的途径和增长策略,通过新产品的介绍,渠道扩展和地理扩展成为第一名儿童健康平台;和其他前瞻性语句。这些前瞻性陈述基于当前计划,期望,估计,预测和预测以及管理的信念和假设。Word s such as “expect,” “vision,” “envision,” “evolving,” “drive,” “anticipate,” “intend,” “maintain,” “should,” “believe,” “continue,” “plan,” “goal,” “opportunity,” “estimate,” “predict,” “may,” “will,” “ could,” and “would,” and variations of these terms or the negative of these terms and similar expressions are intended to identify these前瞻性语句。应将本释放的内容与我们最近提交给美国证券交易委员会的最新文件中包含的风险因素,警告和警告性声明一起考虑。本新闻稿中的前瞻性陈述列出了我们的信念。我们不承担任何义务,以更新此日期之后的任何前瞻性陈述,也不符合此类陈述与公司期望的实际结果或更改,除非法律要求。
Wingd的发动机设计专业知识使其对引擎如何与能量系统的其他组件进行交互以最大程度地提高能源效率的独特见解。电气化技术可以包括轴或前端发电机,电池,电源转换器以及在需要时与岸电界面,风支撑系统,太阳能发电燃料电池甚至在板载碳捕获的情况下集成。Wingd与关键组件的供应商建立了牢固的关系,以实现完整能源系统的准确模拟。
量子随机数生成器 (QRNG) 承诺生成完全不可预测的随机数。然而,以随机模型形式对随机数进行安全认证通常会引入难以证明或不必要的假设。两个重要的例子是将对手限制在经典机制中以及连续测量结果之间的相关性可以忽略不计。此外,不严格的系统特性会打开一个安全漏洞。在这项工作中,我们通过实验实现了一个不依赖于上述假设的 QRNG,其随机模型是通过严格的计量方法建立的。基于真空涨落的正交测量,我们展示了 8 GBit/s 的实时随机数生成率。我们的安全认证方法提供了许多实际好处,因此将在量子随机数生成器中得到广泛应用。特别是,我们生成的随机数非常适合当今的传统和量子加密解决方案。