基础土木工程 变形体力学-I 变形体力学-II 固体力学 工程力学 材料强度实验室 流体力学与机械实验室 测量-I 测量-II 测量实践-I 测量实践-II 流体力学 流体力学与机械 应用液压与流体机械 流体力学与机械实验室 流体机械实验室 流体力学实验室 土壤力学 基础工程 土力学实验室 钢筋混凝土结构-I 钢筋混凝土结构-II 设计和绘图(钢筋混凝土和钢) 钢结构设计 给水工程 卫生工程 环境工程实验室 结构分析-I 结构分析-II 混凝土和公路实验室 设计和绘图(灌溉和环境工程) 土木工程制图估算、成本核算和规范 计算机应用实验室-I 计算机应用实验室-II 基础结构设计 工程地质和土木工程材料 城市规划和建筑要素灌溉工程材料强度实验室
基础土木工程 变形体力学-I 变形体力学-II 固体力学 工程力学 材料强度实验室 流体力学与机械实验室 测量-I 测量-II 测量实践-I 测量实践-II 流体力学 流体力学与机械 应用液压与流体机械 流体力学与机械实验室 流体机械实验室 流体力学实验室 土壤力学 基础工程 土力学实验室 钢筋混凝土结构-I 钢筋混凝土结构-II 设计和绘图(钢筋混凝土和钢) 钢结构设计 给水工程 卫生工程 环境工程实验室 结构分析-I 结构分析-II 混凝土和公路实验室 设计和绘图(灌溉和环境工程) 土木工程制图估算、成本核算和规范 计算机应用实验室-I 计算机应用实验室-II 基础结构设计 工程地质和土木工程材料 城市规划和建筑要素灌溉工程材料强度实验室
三十多年来,DEFORM 已被证明是一种适用于工业应用的精确而强大的有限元分析 (FEA) 解决方案。该模拟引擎能够非常准确地预测大变形金属流动、热传递和材料特性。先进的网格生成器会自动创建自适应的优化网格。任意体对体接触支持对多个变形体的分析。整个系统都提供用户定义的工具,允许高级用户根据自己的需求自定义模型。
构建材料从其内部结构元素的几何布置中得出其性能。他们的设计依赖于连续的成员网络来控制大块的全球机械行为。在这项研究中,我们引入了一类材料,这些材料由离散的串联环或三维网络中的笼子颗粒组成,形成了多重型构建材料(PAMS)。我们提出了一个通用设计框架,将任意晶体网络转化为粒子串联和几何形状。响应小的外部载荷,PAM的行为就像非牛顿流体一样,显示出剪切粉状和剪切厚的响应,可以通过其融合拓扑控制。在较大的菌株下,PAM的行为像晶格和泡沫一样,具有非线性应力 - 应变关系。在Mictoscale,我们证明PAM可以响应于应用的静电电荷而改变其形状。PAM的独特特性为开发刺激反应材料,能量吸收系统和变形体系结构的路径铺平了道路。p
量子态控制对于量子信息处理和通过量子网络传输量子信息至关重要。在本文中,我们研究如何通过设计描述系统内部几何形状或配置的时间相关物理参数来控制多体量子系统的时间演化。一个有趣的经典类比是,一只坠落的猫可以重新调整自己的方向,以便它四脚着地,最大限度地减少对身体的伤害[1-4]。这种经典现象的可控性与这样一个事实有关:猫不是刚体[5],但可以改变身体的形状和身体各部分的相对方向,使它能够在不违反角动量守恒定律的情况下旋转。在量子领域,自主控制问题可能变得更加复杂,因为量子变形体并不是一个经过充分研究的、能够轻易表现出量子控制特性的平台。为了说明我们的方法,我们考虑一个由耦合谐振子链组成的量子系统,我们将使用它来展示在给定的控制运行时间内通过改变耦合和频率来实现量子猫态的传输和重新定位。
目的本课程的目标是学习如何在力学中使用高级数学工具,学习如何在可变形的身体,流变学响应中构建复杂应力 - 应变状态的物理和数学模型,并学习如何设计静态多样化的不确定的结构。在本课程中,学生将获得以下能力:能够在力学中使用高级数学工具,能够在可变形物体中构建复杂应力 - 应变状态的物理和数学模型,设计静态地倍增不确定的结构。计划遵循和完成课程的计划义务;相关研究文献的介绍;课程主题的概述; 3D连续体的概念;凯奇(Cauchy)对应力矢量,正常和剪切应力的定义,在变形体中有限体积的静态平衡,考奇(Cauchy)的压力定理;应力张量(Cauchy,第一Piola-Kirchhoff,第二个Piola-Kirchhoff,Biot等。学习成果);应力张量的偏离和静水部分;主应力和3D中的最大剪切应力;压力张量和压力张量偏离部分的不变性;菌株理论;位移载体,变形梯度,变形张量,小/有限菌株理论;小应变张量的几何解释;应变的兼容条件;由于外部载荷引起的弹性应变能;能量方法,每单位体积的应变能密度;虚拟工作的原则;理想情况是弹性材料,绿色弹性;物质各向异性;各向同性,线性弹性材料;从实验中确定材料常数;胡克定律,超弹性;体积和失真工作/能量;温度的影响; navier-lame方程;特定的应力应变状态;通风应力功能;使用FEM的计算机模拟;复杂的现实生活中的例子和案例研究的先决条件符合硕士机械工程研究计划的入学条件 - 研发计划。