真菌越来越牵涉到经济上重要的水果和蔬菜变质的药物。这项研究的目的是确定负责卷心菜(甘蓝橄榄石)和凹槽南瓜(Telfairia occidentalis)叶片的真菌物种,在尼日利亚港口哈科特港的不同市场中出售。总共分析了50个样品,分析了肉体和南瓜的肉体学,近端和矿物质成分。分别从白菜和南瓜获得了总共170和128个真菌分离株。被宠坏的卷心菜样品的真菌计数范围从5.1×10 5 cfu/g到7.2×10 6 cfu/g/g,来自Rumuokoro和Mile 1市场的样品分别具有最高和最低计数。南瓜的真菌计数范围从2.8×10 4 cfu/g到2.4×10 5 cfu/g,rumuokoro和d/line市场分别产生最高和最低计数。所鉴定的真菌是青霉,尼日尔曲霉,cladosporium sp。,Rhizopus sp。,Aspergillus flavus,fusarium sp。,Trichophyton sp。和Saccharomyces sp。aspergillus sp。的患病率最高(88%),其次是Saccharomyces sp。(84%),penicillium sp。(44%)和根茎sp。(44%)。蔬菜中含有大量的粗蛋白和碳水化合物,而脂肪含量则低。蔬菜富含Na,Mg,Ca,K,Cu和Zn。这项研究表明,隔离的真菌与卷心菜和南瓜叶的变质有关,可以追溯到糟糕的处理和出售市场的卫生状况。
目的:基于基于OCT E的共识定义,研究视网膜牵引力参与层状黄斑孔(LMH)的发病机理和相关疾病。设计:回顾性,观察性研究。参与者:七十二只眼睛,带有LMH,前膜foveoschisis(erm-fs)或黄斑假毛(MPH)。方法:为了定量评估视网膜牵引力在发病机理中的参与和强度,用EN Face OCT成像可视化视网膜褶皱,并测量了parafoveal视网膜褶皱(MDRF)的最大深度。变质。主要结果度量:视网膜褶皱和M-charts得分的最大深度。结果:在72只眼中,有26只被分类为LMH,25个为具有ERM-FS,而21个为MPH。parafoveal视网膜褶皱。LMH的MDRF(7.5 17.6 m m)的意义明显小于ERM-FS(86.3 31.4 m m)和MPH(74.5 24.6 m m)(均P <0.001),而MPH和ERM-F之间的MDRF和MPHF和ERM-FS之间没有明显的差异。在ERM-FS和MPH中观察到MDRF和M-CHARTS评分之间的显着正相关(分别为P¼0.008和0.040),但在LMH中观察到了显着的正相关性(分别为P¼0.008和0.040)(p¼0.073)。结论:在LMH组中,视网膜牵引力明显弱于ERM-FS和MPH组。MDRF与ERM-FS和MPH组中的变质性程度显着相关。这些结果提供了对疾病的病理生理学和治疗策略的见解。财务披露:作者在本文中讨论的任何材料中都没有专有或商业利益。眼科科学2023; 3:100305ª2023撰写的美国眼科学会。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:最近,在鹅香肠的成熟过程中,注意到了由氨和醋味组成的缺陷。位于意大利北部伦巴第塔的工艺设施的生产商要求我们确定该缺陷的原因。因此,本研究旨在确定潜在的负责药物来破坏这种鹅香肠。使用“针头探测”技术通过感觉分析检测到腐败。但是,由于高氨和醋的气味,变质的香肠无法销售。添加的起动培养物并未限制或抑制由Brevis(主要种类)以及粪肠球菌和粪肠球菌和粪肠球菌代表的腐败微生物。这些微生物在成熟过程中生长,并产生了大量的生物胺,这可能代表了消费者的风险。此外,Lev。Brevis,是一种杂种乳酸菌(LAB),还产生乙醇,乙酸和香肠颜色的变化。在体外确认生物胺的产生。此外,如先前的研究中所观察到的那样,腐败的第二个原因可以归因于成熟过程中生长的霉菌。分离的菌株,纳尔吉藤菌(Penicillium nalgiovense)作为开胃菜培养物和植木菌(P. lanosocoerulum),是一种环境污染物,在肉类和壳体之间生长出来,产生了大量的总挥发性氮,负责在成熟区和索苏群中感知到的ammonia味。这是对斑鸡香肠中Brevis占主导地位的第一个描述。
了解食物变质的原因,类型和预防措施对于确保食用食物的安全性和质量至关重要。适当的存储,卫生,保存技术和使用防腐剂可以帮助防止食物变质并确保可用的安全和健康食品。必须保持警惕并遵守建议的指南,以防止食物变质并保持我们的健康和福祉。
使产品不适合或不适合摄入的过程或变化称为食物腐烂。这种复杂的生态现象是微生物化学过程的生化活性最终占主导地位的结果。当微生物,化学或物理变化发生使消费者无法使用的产品时,食物会变质。微生物的增殖产生的酶会导致食物中无法造成的副产品,这是导致微生物食品恶化的原因。化学食品恶化发生时,食物中的不同成分彼此反应或与其他成分反应,改变食物的感觉特性。这可以通过酶褐变或非酶促褐变和氧化发生。当潮湿的食物过于干燥或干燥食物保留过多的水分时,就会发生物理食品降解[1]。由于人们开始生产和存储食品,宠坏,粮食损失以及废物成为食品安全和保障方面的人类重要问题。如今,在消费之前,最多三分之一的食物被宠坏或浪费了,每年约为13亿吨。这些损失是供应链中发生的一个或多个问题的结果,从初始农业生产到消费者一级[2]。
摘要 — 随着量子计算越来越流行,底层量子计算平台的能力和复杂性都在增长。不幸的是,由于现有量子程序数量相对较少,并且存在预言问题,即缺乏对程序预期行为的规范,因此测试这些平台具有挑战性。本文介绍了 MorphQ,这是第一个用于量子计算平台的变质测试方法。我们的两个主要贡献是 (i) 一个程序生成器,它可以创建大量且多样化的有效(即不会崩溃的)量子程序集,以及 (ii) 一组利用量子特定变质关系来缓解预言问题的程序转换。通过测试流行的 Qiskit 平台对该方法进行评估表明,该方法在两天内创建了超过 8000 个程序对,其中许多都暴露了崩溃。检查崩溃后,我们发现了 13 个错误,其中 9 个已经得到确认。MorphQ 扩大了量子计算平台测试技术的范围,有助于为这个日益重要的领域创建可靠的软件堆栈。
o生牛奶可以被多种微生物污染(Ledenbach和Marshall,2009年)。挤奶后,乳酸细菌(包括乳酸菌,乳酸杆菌,白细胞杆菌,肠球菌和链球菌)立即在牛奶中发现(Wouters等,2002,Machado等,2017,2017,Fusco等,2020)。这些生物中的许多生物在发酵乳制品中起重要的功能作用(Wouters等,2002),但如果不保留牛奶,这些生物可能会导致牛奶中的损坏。一旦牛奶被冷却和冷藏,精神营养的生长(包括芽孢杆菌,微球菌,假单胞菌,动物杆菌,气球杆菌等)受到青睐,并且它们成为存在的主要微生物(Muir,2011,Quigly,2011,Quigley,2011,Quigley et al.,2013年,2013年,YAA)。o最近的一项评论指出,生奶的菌群主要由革兰氏阴性菌(Pseudomonas,serratia,serratia,eeromonas和entobacter)和革兰氏阳性孢子形成剂组成,芽孢杆菌(Bacillus,bacillus,aneurinibacillus,brevibaCillus,brevibacillus and geobacacilus and geobacIllus and GeobacIllus and Geobacillus and divebaCillus al al ail ail ail al o Another review comments that “Storage of raw milk at refrigerator temperature for several days can lead to growth of psychrotrophic species of several bacterial genera: Aerococcus , Bacillus , Lactobacillus , Leuconostoc , Microbacterium , Micrococcus , Propionibacterium , Proteus , Pseudomonas , Streptococcus , coliforms, and others (Erkmen and Bozoglu,2016年)。 o“生牛奶中形成的孢子细菌主要是芽孢杆菌属。 (例如B. cereus,B。licheniformis,B。megaterium和B. uttilis)。 梭状芽胞杆菌。 在低水平的生牛奶中存在。o Another review comments that “Storage of raw milk at refrigerator temperature for several days can lead to growth of psychrotrophic species of several bacterial genera: Aerococcus , Bacillus , Lactobacillus , Leuconostoc , Microbacterium , Micrococcus , Propionibacterium , Proteus , Pseudomonas , Streptococcus , coliforms, and others (Erkmen and Bozoglu,2016年)。o“生牛奶中形成的孢子细菌主要是芽孢杆菌属。(例如B. cereus,B。licheniformis,B。megaterium和B. uttilis)。梭状芽胞杆菌。在低水平的生牛奶中存在。o “A wide variety of genera including Gram-negative genera ( Pseudomonas, Aeromonas, Alcaligenes, Acromobactor Acinetobacter, Flavobacterium, Chryseobacterium, Enterobacteriaceae such as Serratia, Hafnia, Klebsiella, Enterobacter and Rahnella ) and Gram-positive genera ( Bacillus,在生乳中经常发现梭状芽孢杆菌,小杆菌,微球菌,葡萄球菌,微区,乳酸菌和乳酸杆菌)(Vithanage等,2016)。生牛奶中孢子形成细菌的种群季节性变化。芽孢杆菌和梭状芽孢杆菌。在冬季收集的原始牛奶中的水平高于夏季,因为在冬季,奶牛躺在孢子污染的床上用品材料上,并消耗含孢子的青贮饲料”(Erkmen and Bozoglu,2016年)。o假单胞菌属。被认为是牛奶变质的最常见原因(Quigley等,2013)。serratia liquefaciens也可以在生乳中造成变质(Bagliniere等,2017)。o由于乳糖是牛奶中的主要碳水化合物,因此可以水解乳糖的微生物(具有乳糖酶或β-半乳糖苷酶等酶的生物)比无法(Erkmen and Bozoglu,2016年)具有优势。
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。本地信息通过创建称为信息争夺的复杂相关性来传播系统中,因为此过程可防止从本地测量中提取信息。在这项工作中,我们开发了一个改编自固态NMR方法的模型,以量化信息的争夺。通过时间逆转Loschmidt回声(LE)和多个量子相干实验进行了逆转,这些实验是通过内在包含不完美的。考虑到这些缺陷,我们得出了超时相关性(OTOC)的表达式,以根据测量信息传播的活动旋转的数量来量化可观察到的信息。基于OTOC表达式,在LE实验中的非扭转术语的效应自然而然地产生了效应,从而诱导了可测量的信息争吵程度的定位。这些效果定义了确定动态平衡的可观察到的活性自旋数量的定位簇大小。我们将模型的预测与使用固态NMR实验进行的量子模拟进行对比,这些量子模拟与时间反向回声相混合的信息与受控的缺陷。与量子信息的动力学及其从实验数据确定的效果相关的动力学发现了出色的定量一致性。提出的模型和衍生的OTOC设置了用于量化大量子系统(超过10个4旋转)的量子信息动态的工具,与实验实现了本质上包含不完美的实现。
客户积极使用该解决方案,为组织创造价值并带来业务影响。它改进了问题检测、流程效率和覆盖范围,并确定了潜在的恢复机会。准备。设置。保存。在成功实施和解决方案增强后,该组织的质量管理团队现在能够更好地更快地发现问题,大大节省保修成本,并为未来做出明智的决策。该解决方案的附加功能现在有助于改进现有的分析并更准确地检测受监控的问题,并扩展分析的范围以捕获更多的恢复和损失预防领域。此外,与分析解决方案推出同时实施的新业务流程有助于提高组织内的用户采用率。
该资源是由作者使用美国司法部提供的联邦资金准备的。表达的意见或观点是作者的意见或观点,不一定反映美国司法部的官方立场或政策。