摘要:我们研究了动态解耦技术在可公开访问的 IBM 量子计算机 (IBMQ) 上的当前有效性。该技术也称为 bang-bang 解耦或动态对称化,包括应用脉冲序列,通过对称化量子比特与环境的相互作用来保护量子比特免于退相干。该领域的研究者研究了具有不同对称性的序列,并在通常考虑单量子比特状态的 IBMQ 设备上进行了测试。我们表明,最简单的通用序列对于在 IBMQ 设备上保存双量子比特状态很有用。为此,我们考虑了单量子比特和双量子比特状态的集合。结果表明,使用可用 IBMQ 脉冲的简单动态解耦方法不足以在没有进一步关注的情况下保护一般的单量子比特状态。尽管如此,该技术对贝尔态是有益的。这鼓励我们研究逻辑量子比特编码,例如 {| 0 ⟩ L ≡| 01 ⟩ , | 1 ⟩ L ≡| 10 ⟩} ,其中量子态的形式为 | ψ ab ⟩ = a | 0 ⟩ L + b | 1 ⟩ L 。因此,我们探索了具有大量两量子比特 | ψ ab ⟩ 状态的动态解耦的有效性,其中 a 和 b 是实数振幅。据此,我们还确定 | ψ ab ⟩ 状态最能从这种动态解耦方法中受益,并减缓了其生存概率的衰减。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 9 月 30 日发布。;https://doi.org/10.1101/2022.09.23.509206 doi:bioRxiv preprint
基于慢病毒载体的树突状细胞疫苗在动物模型中诱导保护性 T 细胞反应,以抵抗病毒感染和癌症。在本研究中,我们测试了是否可以通过直接注射表达抗原的慢病毒载体来实现预防性和治疗性疫苗接种,从而避免体外转导树突状细胞。注射的慢病毒载体优先转导脾脏树突状细胞并导致长期表达。注射编码淋巴细胞脉络丛脑膜炎病毒 (LCMV) 的 MHC I 类限制性 T 细胞表位和 CD40 配体的慢病毒载体可诱导抗原特异性细胞溶解性 CD8 + T 淋巴细胞反应,从而保护小鼠免受感染。向慢性感染小鼠注射编码 LCMV MHC I 类和 II 类 T 细胞表位和可溶性程序性细胞死亡 1 微体的慢病毒载体可迅速清除病毒。通过直接注射慢病毒载体进行疫苗接种对无菌 α 基序和含有 HD 结构域的蛋白 1 敲除 (SAMHD1 敲除) 小鼠更有效,这表明含有 Vpx(一种通过诱导 SAMHD1 降解来提高树突状细胞转导效率的慢病毒蛋白)的慢病毒载体将成为治疗人类慢性疾病的有效策略。
基于慢病毒载体的树突状细胞疫苗在动物模型中诱导保护性 T 细胞反应,以抵抗病毒感染和癌症。在本研究中,我们测试了是否可以通过直接注射表达抗原的慢病毒载体来实现预防性和治疗性疫苗接种,从而避免体外转导树突状细胞。注射的慢病毒载体优先转导脾脏树突状细胞并导致长期表达。注射编码淋巴细胞脉络丛脑膜炎病毒 (LCMV) 的 MHC I 类限制性 T 细胞表位和 CD40 配体的慢病毒载体可诱导抗原特异性细胞溶解性 CD8 + T 淋巴细胞反应,从而保护小鼠免受感染。向慢性感染小鼠注射编码 LCMV MHC I 类和 II 类 T 细胞表位和可溶性程序性细胞死亡 1 微体的慢病毒载体可迅速清除病毒。通过直接注射慢病毒载体进行疫苗接种对无菌 α 基序和含有 HD 结构域的蛋白 1 敲除 (SAMHD1 敲除) 小鼠更有效,这表明含有 Vpx(一种通过诱导 SAMHD1 降解来提高树突状细胞转导效率的慢病毒蛋白)的慢病毒载体将成为治疗人类慢性疾病的有效策略。
截至 2022 年 6 月 30 日,美国已报告 87,298,343 例 2019 年冠状病毒病 (COVID-19) 病例,其中约 17.4% 发生在 0-17 岁儿童中 (1)。截至 2022 年,0-19 岁人群占病例的 23.6%,较 2020 年全年的 14.4% 大幅增加(图 1)。儿童病例负担的增加与与成人相比疫苗接种和接种的差异相对应,其中绝大多数接种了 mRNA COVID-19 疫苗(辉瑞-BioN-Tech 或 Moderna;参考文献 1)。 2020 年 12 月 11 日,FDA 为辉瑞-BioNTech 颁发了首个紧急使用授权 (EUA),这是 16 岁及以上个人唯一可用的选择(图 1 和参考文献 2)。直到近 5 个月后的 2021 年 5 月 10 日,FDA 才将辉瑞-BioNTech 的 EUA 扩大到包括 12-15 岁的青少年(图 1 和参考文献 3)。大约 6 个月后,即 2021 年 11 月 3 日,美国 FDA 修改了 EUA,将 5-11 岁的儿童纳入其中(图 1 和参考文献 1、4)。在第一个 EUA 获得批准一年半多之后,即 2022 年 6 月 17 日,辉瑞-BioNTech 和 Moderna 的 COVID-19 疫苗获准用于 6 个月及以上的儿童(图 1 和参考文献 5)。值得注意的是,根据最新的 EUA 修正案,Moderna 仅被授权用于 18 岁及以上的成年人 (5)。尽管 CDC 建议所有 6 个月及以上的人都接种 COVID-19 疫苗,但与成年人相比,儿童的疫苗接种率并不理想;截至 2022 年 6 月 30 日,63.4% 的 5-11 岁儿童未接种疫苗,而 12-17 岁青少年为 30.0%,18 岁及以上成年人为 10.1% (1)。根据系统
迄今为止,VDE Renewables 团队已在全球范围内审查了超过 1 GWh 的各种公用事业规模的可再生能源项目,并且与领先的金融机构合作,帮助他们了解和解决 ESS 技术可能带来的独特和特定的技术风险领域(特别是在安全性和可靠性领域),VDE Renewables 团队完全有能力为您的项目提供帮助。
尽管通过经皮冠状动脉介入治疗和药物治疗的发展,心肌梗死的预后已经得到改善,但心肌梗死仍然是一种危及生命的疾病。此外,心肌梗死后因重塑而导致的心力衰竭需要终生管理。本研究的目的是开发一种抑制心肌梗死造成的心肌损伤的新型治疗方法。我们专注于抑制可溶性环氧化物水解酶,以延长具有血管扩张和抗炎特性的环氧二十碳三烯酸的活化。我们成功地制造了一种新型疫苗来灭活可溶性环氧化物水解酶,并评估了该疫苗在大鼠心肌梗死模型中的效果。在接种疫苗的组中,缺血面积显著减少,心脏功能得到显著保留。疫苗治疗明显增加了边界区域的微血管,并抑制了心肌梗死继发的纤维化。这种可溶性环氧化物水解酶疫苗是改善心肌梗死后心脏功能的一种新治疗方法。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 2 月 19 日发布。;https://doi.org/10.1101/2022.02.17.480914 doi:bioRxiv 预印本
抽象透明质酸是一种糖胺聚糖聚合物,已显示在胃肠道的体内稳态中起重要作用。然而,其在胃肠道上皮屏障元件中的机械意义仍未开发。这里,我们的结果表明,透明质酸治疗导致小鼠肠道菌群的显着变化。证明了透明质酸处理和透明质酸诱导的菌群改变的功能后果,利用了柠檬酸杆菌和DSS诱导的结肠炎模型以及微生物群移植方法。我们表明,透明质酸减轻了病原体和化学诱导的肠粘膜损伤的肠道炎症。细菌性结肠炎的保护与增强的啮齿动物清除和减轻病原体诱发的肠道营养不良有关。微生物群移植实验表明,透明质酸改变的微生物群具有足够的能力来允许防止啮齿动物的感染。与Akkermansia Mucini Phila定殖,这是一种由透明质酸治疗极大地富集的共生细菌,可以减轻小鼠啮齿动物念珠菌诱导的细菌性结肠炎。此外,发现Akkermansia诱导的保护与杯状细胞的诱导以及粘蛋白和上皮抗菌肽的产生有关。总的来说,这些结果提供了对透明质酸在调节肠道微生物群调节肠道感染和炎症中免疫力的调节作用的新见解,具有肠道微生物组靶向免疫疗法的治疗潜力。