摘要 - 评估和培训自主驾驶系统需要多样化且可扩展的角案例。但是,大多数现有场景生成方法都缺乏可控性,准确性和多功能性,从而导致产生不令人满意的结果。受图像生成中Draggan的启发,我们提出了DragTraffic,这是基于条件扩散的广义,交互式和可控制的交通场景生成框架。dragtraffic使非专家可以通过自适应混合物专家体系结构为不同类型的交通代理生成各种逼真的驾驶场景。我们采用回归模型来基于条件扩散模型提供一般的初始解决方案和改进程序,以确保多样性。通过交叉注意来引入用户注定的上下文,以确保高可控性。在现实世界中的数据集上进行的实验表明,拖拉法在真实性,多样性和自由方面优于现有方法。演示视频和代码可在https://chantss.github.io/dragtraffic/上找到。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要。本文考虑了由制造商和制造商面临随机生产破坏风险的零售商组成的两回能供应链。制造商以更高的价格从二级市场中补充未生产的物品,以履行零售商的订单。为了吸引更多客户,本文考虑了客户的需求,取决于产品销售价格,股票水平和新鲜物品的新鲜水平。此外,本文考虑了保护技术投资(PTI),以减轻物品和碳税调节的恶化率,以遏制从供应链活动中揭示的碳排放量。使用领导者与追随者关系的Stackelberg游戏方法考虑制造商是领导者和零售商作为追随者。开发了几种定理,以说明利润功能的凹度,并找出最佳解决方案,在这些解决方案中,目的是最大化制造商的总利润,但要承担零售商愿意产生的最低总成本。提出了几个数值示例,以说明所提出的模型,并在有或没有碳税政策的情况下比较获得的结果。最后,具有一些关键管理见解的灵敏度分析以演示模型。结果表明,产品的新鲜度影响了消费者购买更多购买的决定,这就是为什么新鲜度是增加销售以及供应链的总利润的重要竞争工具的原因。
因此,可以通过执行各个量子数交换的所有可能组合来获得允许的对振幅(eqs。(S2)和(S3)),填充反对称条件等式。(S1)。这样做,我们发现八个允许尊重反对称条件的对对称类别,其中4对应于奇数相关性,请参见表S1。特定相关性是超导索引(sup。索引)在扩大允许的对对称性方面起着至关重要的作用。表S1在主文本的“ jjs中的us频间振幅”部分中显示为表1。在没有任何自旋粘合字段的情况下,出现对的相关性的自旋对称性与母体超导体的自旋对称性相同。因此,在我们的研究中允许的对对称类别(不存在旋转式粘合字段)是ESEE和OSOE对对称类别:它们对应于超导体指数中的偶数(奇数频率)旋转(奇数)均匀(奇数)旋转单元(奇数),甚至对应于超导器指数。通过包括一个自旋混合字段,可以获得表S1中对应于OTEE和OTOO对对称类别的奇数自旋 - 三个三角对振幅,可以用作超导阶段高度可控制的旋转源,从而可以使超导性旋转旋转的超导量。由于我们在主文本中提出的结果中没有自旋混合字段,因此其中的对对称性表现出父母超导体的自旋对称性,即自旋单旋。这是在主文本的“ JJS中的persupconductor对振幅”部分中特别讨论的。
根据修订后的定义:(i)如源资产按定义是“可控的”,则调度遵从性仅基于调度水平;(ii)如源资产按定义是“不可控的”,则调度遵从性基于气象条件;或(iii)如源资产按定义是“部分可控的”,则调度遵从性基于(i)和(ii)的组合,其中池资产能力的底部部分(即可变能源资源数量)根据气象条件进行评估,其余部分根据调度进行评估。
随着大规模可变可再生能源 (RE) 的出现,电力系统运行模式发生了重大变化 [5]。过去,完全可控的发电量要满足不可控的负荷需求。现在有了可再生能源,发电量不再是完全可控的。由于天气波动导致可再生能源资源不稳定,在秒、小时和天的尺度上给发电量带来了不确定性,需要采用电网规模的储能技术来补充这些能源。抽水蓄能水电站 (PSH) 可以非常有效地促进高可变可再生能源电力融入电力系统。抽水蓄能水电项目是系统运营商的工具和公用事业规模选项,可实现能源从传统能源向可再生能源的平稳过渡。
冰结构的关键在于,在某种条件下,氢键是否以可控的方式集体断裂,即一系列氢键沿一个方向断裂,例如沿图 1 所示的虚线。如果氢键从中心沿六个方向集体断裂,则预计冰将断裂成六块,每块与中心成 60 度角。从机械工程的角度来看,冰应该从任何一点开始具有各向异性。冰的这种机械特性尚未被研究过。在这篇简短的报告中,我们证明,薄冰在接触点受到冲击/撞击时确实会断裂。冰以预期的角度断裂成六块。这可能是第一个例子直接观察到氢键沿预期方向以可控的方式集体断裂。
Roy L. Nersesian 化石燃料、水力、核能和地热发电厂将可控产出与不可控需求相匹配。可以相当有把握地估计短期电力需求。发电厂的投产或停产是为了预测电力需求在早上增长,在下午和傍晚达到峰值,在深夜下降。一些发电厂(核能和煤炭)满负荷运转以满足基本负荷需求,而其他发电厂(天然气和水力)则根据不断变化的可变负荷需求增加和减少产能。加拿大、挪威、巴西和许多发展中国家的水电和法国的核电既满足基本需求,也满足可变需求。本文重点介绍如何通过模拟电力存储性能来将不确定或不可控的供应转变为可靠和可控的供应。虽然水力和地热是可控的可再生能源,但更具挑战性的是太阳能和风能。是的,太阳每天都在照耀,但云层呢?是的,风每天都在吹,但风速呢?因此,太阳能和风能的产出是不确定的;因此无法控制。随着太阳能和风能的持续增长,将无法控制的供应与无法控制的需求相匹配对公用事业运营商来说是一个越来越大的挑战。如果没有大规模的电力储存手段,随着太阳能和风能相对于可控的传统供应的重要性增加,这可能会成为一项艰巨的任务。如果有足够的电力储存,调度员可以从中补偿太阳能和风能产量的下降,就像增加化石燃料电厂一样,太阳能和风能就可以转化为可控的电源。电力储存可以比作传统的商品库存,在需求低迷时储存过剩的生产,在需求增加时减少生产。这允许或多或少保持生产平衡,库存可以吸收销售波动。同样,如果太阳能和风能产量的变化可以被引导到足够容量的电力储存中,那么太阳能和风能就可以转化为可控的供应。抽水蓄能电站或重力电池可以储存和供应电力,以弥补电力供需之间的不匹配。抽水蓄能电站或重力电池由两个不同高度的水库组成,水库上装有可逆式水泵涡轮机。多余的电力用于将水从下水库抽到上水库,电力则由水从上水库流向下水库的重力流产生。泵和涡轮机是同一种设备,驱动涡轮机将水抽到较高海拔的电动机变成发电机,水通过涡轮机流到较低海拔,从而产生动力。公用事业电池的功能与抽水蓄能电站相同,即储存剩余电力,以便调度以弥补短缺。目前,只有重力电池具有为公用事业服务所需的存储容量。公用事业电池正在开发中,但电池设计必须取得技术突破,以找到一种低成本材料,既能储存大量电力,又能适应快速充电和放电。本文旨在说明如何依靠 @RISK 模拟软件来模拟位于不同地点的太阳能和风力发电场系统的输出,从而处理可再生能源固有的不确定性。1 然后将系统输出与不确定的需求进行比较,以获得供需不匹配的概率分布。然后使用该概率分布来确定重力电池的尺寸,以补偿供需的变化,从而将不确定的供应转变为可控的供应,以满足需求的变化。公用事业电池的尺寸计算将遵循相同的一般格式。1 @RISK 模拟软件可从 Palisade Corporation (www.palisade.com) 获得。本文主题来自《能源风险建模》,可从 www.palisade.com/books/energy.asp 获取。作者是蒙茅斯大学 (rnersesi@monmouth.edu) 的教授,还撰写了《21 世纪的能源》(2010 年) 及其更新版本《能源经济学:市场、历史和政策》,该书将于 2016 年由 Routledge Publishing (www.routledge.com) 出版。《历史与政策》将于 2016 年由 Routledge Publishing(www.routledge.com)出版。《历史与政策》将于 2016 年由 Routledge Publishing(www.routledge.com)出版。