摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
微生物燃料电池 (MFC) 是一种基于微生物的燃料电池 (MFC),可通过细菌活动产生可再生能源。通过使用产电细菌作为催化剂,这种生物电化学燃料电池能够将化学能直接转化为电能。产电细菌通过一系列细胞外电子转移 (EET) 机制(称为阳极呼吸)将电子转移到 MFC 的阳极,产电细菌专门通过氧化提取电子。产生的电子随后被转移到阴极,在阴极上用于氧化化合物的还原反应(即电能(或者,在空气阴极MFC的情况下,是氧气)[1]。通过添加营养物质作为能源,可以同时实现可再生能源的生产。因此,人们认为利用有机废物发电的MFC技术前景广阔。然而,由于MFC的内阻大、输出电压低,单个MFC产生的能量实际上是无用的,这是主流的MFC技术(它甚至不能直接激活低功率电子设备)
两级发射器与光腔耦合的两层发射器取决于与状态周围密度的相互作用[1]。与弱耦合方案形成鲜明对比的是,发射器表现出percell增强的自发发射[2,3],发射异常的发射极强度g超过了发射机衰变速率(γ)和空腔损失速率(κ)与量子的量化量的量子和量子均与Emtrent的量子交换。它产生了光学响应中的狂犬病分裂,例如散射或光致发光(PL)光谱[4-8]。在这种强烈的耦合系统中,量子杂交状态的操作会诱导多种量子光学响应,从而导致量子光学设备的广泛应用[9-12]。在介电腔中,衍射量最大的模式体积分别需要高质量(Q)因子(Q)和低温才能实现强耦合,分别在κQ-1和γk b t之后[13-15]。高Q空腔导致发射极和腔之间的狭窄光谱重叠,即狭窄的呼声条件,以保持强耦合。这些约束显着构成了量子杂交状态的可控性,因此限制了强耦合方案中量子电动力现象的研究。最近,即使在室温下,由于其纳米级模式的体积,等离子腔的平台也达到了等离子和激子之间有效的强耦合[5,7,16]。
Bio/Ecoresbable Electronic Systems在可植入的医疗设备中创造了独特的机会,这些设备在有限的时间内满足需求,然后自然消失以消除对提取手术的需求。这类技术开发的一个关键挑战是,材料可以用作周围水或生物流体的薄壁垒,但最终完全溶于良性最终产品。本文描述了一类无机材料(硅硝酸盐,sion),可以通过血浆增强化学蒸气沉积在薄膜中形成。体外研究表明,sion及其溶解产物具有生物相容性,表明其在植入式设备中的使用潜力。一个简便的过程,用于制造薄弱的多层薄膜,绕过与无机薄膜的机械脆性相关的限制。系统的计算,分析和实验研究突出了基本材料方面。在体外和体内发出无线发光二极管中的演示说明了这些材料策略的实际使用。通过对化学成分和厚度的精细调整,可以选择降解速率和水渗透性的能力为获得一系列功能寿命以满足不同的应用程序要求。
Yemi Osayame 1、Franklin Kostas 1、Mitchell Kopacz 1、Mackenzie Parmenter 1、Christopher B. Rohde 1、Matthew Angel 1
导电氧化物界面引起了广泛关注,这既是因为基础科学的原因,也是因为氧化物电子设备的潜力。这种设备技术成熟的一个重要差距是可扩展性和控制电子特性的途径,这可能会缩小设备工程空间。在这里,我们展示并解释了高度可调的导电氧化物界面的机制。我们使用可扩展且与行业兼容的原子层沉积 (ALD) 技术合成了非晶态-结晶态 Al 2 O 3 /SrTiO 3 界面。在 ALD 室中使用 NH 3 等离子体预处理,并将其持续时间用作电性能的调整参数,其中在室温下观察到三个数量级的薄层电阻跨度。对于导电性最强的样品,我们的结果与使用最先进的外延生长技术(例如脉冲激光沉积)制备的全晶态氧化物界面的最高载流子密度值相当。我们将导电性的起源确定为 NH 3 等离子体预处理引起的 SrTiO 3 还原引起的氧空位。这些结果提供了一种实现导电氧化物界面的简单、可扩展且与工业兼容的途径,具有广泛的参数空间,为氧化物器件工程提供了多功能且灵活的工具包。
抽象的主要激发是固体材料中Majorana fermions的准粒子类似物。典型的示例是Majorana零模式(MZM)和分散的Majorana模式。通过扫描隧道光谱进行探测时,前者表现为明显的电导峰,可精确定位在零能量处,而后者的表现为恒定或缓慢变化的状态密度。MZM遵守非亚伯统计,被认为是拓扑量子计算的基础,它高度免疫环境噪声。现有的MZM平台包括混合结构,例如拓扑绝缘子,半导体的纳米线或1D原子链,在传统的超导体顶部以及单个材料,例如铁基超导体(IBSS)和4HB – TAS 2。最近,在IBS Lifes中也实现了有序且可调的MZM晶格,为将来的拓扑量子计算提供了可扩展且适用的平台。在这篇综述中,我们介绍了最近对MZM的局部探测研究的概述。由材料平台分类,我们从feTe 0.55 SE 0.45和(li 0.84 Fe 0.16)Ohfese的feTe feete超导体中的MZM开始。然后,我们回顾了Iron-Pnictide超导体的主要研究以及IBSS以外的其他平台。我们进一步审查了有关有序和可调的MZM晶格的最新作品,表明菌株是调整拓扑超导性的可行工具。最后,我们就未来的Majorana研究提供了摘要和观点。
带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
在本研究文章中,讨论了抛物线表面上的2D非牛顿Sutterby纳米流体流动的行为。在表面浮力驱动流动的边界区域发生,这是由于反应发生的相当大的温度差异发生在Sutterby Nanofluid和表面的催化剂之间。在抛物线表面上很容易看到的自由对流是通过在催化剂表面上的反应引发的,该反应模拟了一阶激活能。抛物线表面的应用是子弹,汽车帽子和空气工艺品的上部盖。在讨论流下进行数学建模,通过实施微生物的浓度,动量,质量和热量来建模。系统的管理方程是非线性PDE的形式。通过使用相似性变换,理事PDE的转换为非二维颂歌。通过内置函数MATLAB软件包(称为“ BVP4C”)在数值上求解了非尺寸ode的最终系统。图形表示显示了系统浓度,速度,微生物和系统的温度曲线的影响。在温度曲线中,我们检查了嗜热系数NT(0.1、0.5、1.0),prandtl Number pr(2.0、3.0、4.0)和Brownian运动变量NB的影响(0.1、0.3、0.5)。速度轮廓取决于非二维参数,即(Deborah Number de&Hartmann Number ha),发现这些数字(de,ha)会导致个人资料倒塌。此外,还计算出传质,皮肤摩擦和传热速率。该研究的目的是列举抛物线表面对热和质量通过生物相关的Sutterby Nanofluid流动的重要性。