引起了人们对不对称的Fabry -Pérot(FP)腔的重新兴趣,也称为Gires -Tournois谐振器。它们由一个光学厚和一个具有光学薄的金属镜来构成,光可以进入结构。这些光学元素以其在共鸣和增强所选波长上的光与肌电相互作用方面的易用性和有效性而闻名。[4,6,7]在FP谐振器中实现动态调谐的一般策略是,通常通过动态可调的材料(例如graphene)替换镜子之间通常位于镜子之间的被动绝缘体,[11-13]相位变化镁,[14]通过电流聚合物[14]通过(15]液晶(LCS)[16-18] [16-18] [16-18] [16-18] [16-18] [16-18][22]几项作品表明,在腔体中掺入的吲哚丁基氧化物的电控阳性促进了光吸收[12,19]的控制及其在中边缘[20]和近膜中的反射阶段。[21]其他研究利用了氧化氧化物[23]和聚合物[24-26],其纳米结构可调节所得的反射颜色。研究人员表明,掺杂危险的氧化锌[27]和氧化铝[28]的光学泵送允许在亚皮秒级方向上进行超快调节腔共振。也可以通过轻压以非惯性方式来实现[29]液体电解质中纳米颗粒的自组装[30]和相可可的元摩擦剂。[31]为了降低制造复杂性,多种响应材料
摘要:可调和多功能的纳米光子设备用于从光束转向到传感的应用。,关于其功能的基本限制几乎没有理解。难度在于它是一个单个结构,必须在多种情况下表现出最佳响应。在本文中,我们提出了一个通用的理论框架,用于理解和计算多功能纳米光子反应的基本限制。从界限的快速进步到光线形式相互作用,我们表明,在重写两极分化场的设计问题之后,引入合适的互相关约束会引起至关重要的“单一结构”标准。我们证明了这种方法对两种应用的实用性:光学传感的反射性对比度,以及光束开关的最大效率。我们的方法概括为线性光学中的任何主动或多功能设计。
摘要CRISPR/CAS已彻底改变了植物中的基因组工程。然而,尚未探索使用抗Crispr蛋白作为防止CRISPR/CAS介导的基因编辑和植物中基因激活的工具。这项研究描述了烟熏本米那(Nicotiana Benthamiana)的两种抗Crispr蛋白Acriia4和Acrva1的表征。我们的结果表明,当与CRISPR/CAS9瞬时共表达时,Acriia4可防止叶片位置定向的诱变。以类似的方式,AcRVA1能够防止CRISPR/CAS12A介导的基因编辑。此外,使用N. benthamiana系组成表达Cas9,我们表明,使用烟草蚀刻病毒的Acriia4的病毒递送能够完全废除当用病毒传递引导RNA时获得的高编辑水平,在这种情况下,在这种情况下是马铃薯病毒X。我们还表明,Acriia4和AcRVA1抑制基于记者基因的基于CRISPR/DCAS的转录激活。在Acriia4的情况下,这种抑制以高度有效的剂量依赖性方式出现。此外,生长素脱脂与Acriia4的融合导致下游报告基因的生长素调节的激活。此处报道的Acriia4和Acrva1的强抗CAS活性为植物中基因编辑和基因表达的定制控制开辟了新的可能性。
在拓扑结晶绝缘子锡尿酸罐中对费米水平的调整对于访问其独特的表面状态并优化其电子性能(例如Spintronics和Quantum Computing)至关重要。在这项研究中,我们证明了尿尿酸罐中的费米水平可以通过控制化学蒸气沉积合成过程中的锡浓度来有效调节。通过引入富含锡的条件,我们观察到X射线光电学光谱型锡和泰瑟列的核心水平峰值,表明费米水平的向上移动。通过紫外线光谱法测量的工作函数值的下降证实了这种转移,从而证实了SN空位的抑制。我们的发现提供了一种低成本,可扩展的方法,可以在锡尿酸罐中实现可调节的费米水平,从而在具有量身定制的电子特性的材料开发方面取得了重大进步,用于下一代技术应用。
超导体,4和光催化。5–7与氧相比(W o = 3.44)相比,氮的中度电 - 负极性(W n = 3.04)导致在这些化合物中具有混合离子/共价键合特征。对于这种硝酸盐,N 3和金属阳离子之间的强静电相互作用转化为较高的晶格粘性能,其机械硬度和耐火性表现出来。8另一方面,N 2P能级与金属电子状态更接近,因此与孔构金属氧化物相比,轨道杂交和改善的电荷传输特性会产生更高的程度。虽然金属氧化物通常是二元组或半导体,但过渡金属氮化物的电子结构受到氮含量和从金属到半导体的跨度的强烈影响。早期过渡金属元件(例如TIN,ZRN和TAN)的单硝酸盐已被广泛用作微电子中的耐磨涂层和金属扩散屏障,它们的出色电导率可以归因于部分占用的金属D状态。9相比,富含氮的化合物
肿瘤治疗仍是世界级挑战之一。在过去的几十年中,纳米药物递送系统在控制药物释放、降低毒副作用、提高治疗效果方面展现出巨大的潜力。纳米粒子(NPs)的可控性和设计灵活性在生物医学应用的精准药物递送平台的开发中引起了越来越多的关注。肿瘤血管内皮的不完整结构为NPs分布到肿瘤部位提供了可行性,而增强渗透和滞留(EPR)效应是NPs递送到实体肿瘤的主要原理。1然而,纳米药物在肿瘤治疗中尚未取得令人满意的治疗效果,这主要是由于在肿瘤内蓄积不足或渗透性差。 2实体肿瘤具有细胞外基质(ECM)密度高、间质液体压力(IFP)高、血管系统异常、淋巴引流受损等特点,3这些对纳米药物在肿瘤内有效蓄积和渗透构成了巨大的障碍。因此,研究人员致力于调节NPs的粒径、形状、表面物理和化学性质来改变其吸收、分布、代谢和排泄行为,以提高治疗效果。粒径是影响纳米药物递送系统最显著的因素之一,包括NPs的血浆清除率、体内分布、EPR效应、组织扩散以及细胞内化等影响。4许多研究证明,粒径在30至200nm之间的NPs可以通过EPR效应有效到达肿瘤部位,但是在这样的粒径范围内,NPs的保留和渗透能力有很大差异。粒径较小的NPs(<50nm)虽然能够深入肿瘤深层,但是由于细胞流出和回流至外周血管,导致其滞留效果较差。5,6相反,粒径较大的NPs(>100nm)在肿瘤内具有较强的滞留效果,因为它们容易被困在肿瘤细胞间的基质中,不易回流被细胞排泄,但同时这些大颗粒又不能深入肿瘤内部。7,8传统的固定尺寸的NPs很难平衡蓄积和渗透,针对这一问题,研究人员提出了一系列智能调节NPs尺寸的策略,包括尺寸增大策略和尺寸收缩策略。这些策略一般为:
微生物燃料电池 (MFC) 是一种基于微生物的燃料电池 (MFC),可通过细菌活动产生可再生能源。通过使用产电细菌作为催化剂,这种生物电化学燃料电池能够将化学能直接转化为电能。产电细菌通过一系列细胞外电子转移 (EET) 机制(称为阳极呼吸)将电子转移到 MFC 的阳极,产电细菌专门通过氧化提取电子。产生的电子随后被转移到阴极,在阴极上用于氧化化合物的还原反应(即电能(或者,在空气阴极MFC的情况下,是氧气)[1]。通过添加营养物质作为能源,可以同时实现可再生能源的生产。因此,人们认为利用有机废物发电的MFC技术前景广阔。然而,由于MFC的内阻大、输出电压低,单个MFC产生的能量实际上是无用的,这是主流的MFC技术(它甚至不能直接激活低功率电子设备)
*通信:james.utterback@sorbonne-universite.fr摘要实现具有内置纳米级热流动性的可调功能材料是一个重大挑战,可以推进热管理策略。在这里,我们使用时空分辨的热反射率在各向异性AU纳米晶体的自组装超晶体中可视化侧向热传输各向异性。相关电子和热反射显微镜表明,纳米尺度的热量主要沿各向异性纳米晶体的长轴流动,并且在晶粒边界和弯曲的组件上进行了这种情况,而弯曲的组件则干扰热流动。我们通过组成纳米棒的长宽比来精心控制各向异性,并且它超过了纳米双锥体超晶体的纵横比和某些纳米排列。有限元模拟和有效的培养基建模合理地将出现的各向异性行为合理化,以简单的串联电阻模型,进一步提供了一个框架,以估算热各向异性作为材料和结构参数的函数。胶体纳米晶体的自组装有望在使用这种重要材料类别的广泛应用中引导热流的有趣途径。关键字纳米级热传输,胶体纳米晶体,超晶,各向异性,热质融合,时空显微镜
基因的抽象条件表达和表型的观察仍然是生物学发现的核心。当前方法可启用开/关或不确定的分级基因表达。,我们开发了一个“脾气好”的控制器WTC 846,用于精确可调,分级,生长条件在酿酒酵母中基因的独立表达。受控的基因是由核酸脑抑制的强烈半合成启动子表达的,这也抑制了其自身的合成。基础表达被第二秒消除,“零”阻遏物。自动层环降低细胞对细胞的变化,同时通过化学诱导剂对蛋白质表达进行精确调整。WTC 846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes ( CDC42, TPI1 ), exhibited novel overexpression phenotypes ( IPL1 ), showed protein dosage-dependent growth rates and morphological phenotypes ( CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1 ), and enabled cell cycle同步(CDC20)。WTC 846定义了一个“表达夹”,可以通过实验者在细胞蛋白丰度范围内调整蛋白质剂量,而设定点周围的变化有限。
摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。