过去几千年来,传统育种已成功选育出有益的食品、饲料和纤维作物特性。上个世纪,技术取得了重大进步,特别是在标记辅助选择和诱导遗传变异的产生方面,包括过去几十年通过突变育种、基因改造和基因组编辑取得的进步。虽然传统品种开发和转基因基因改造的监管框架已广泛建立,但许多地区缺乏或仍在制定基因组编辑的监管框架。特别是,基因组编辑植物中缺乏“外来”重组 DNA,并且由此产生的 SNP 或 INDEL 与传统育种中的 SNP 或 INDEL 难以区分,这对制定新立法提出了挑战。如果基因组编辑和其他新型育种技术的产品不具有转基因,并且可以通过传统方法产生,我们认为,应用对传统育种和新型食品已经存在的同等立法监督是合乎逻辑和相称的。本综述分析了传统植物育种活动中可选择的自发和诱发遗传变异的类型和规模。它提供了一个基准,可以据此判断基因组编辑技术或其他反向遗传方法带来的遗传变化是否确实与使用传统植物育种方法经常发现的变化相当。
测试和测量最后设置内存简化了测试设计,无需备用电池。内置 RS-232/RS-485 提供最大的系统灵活性,以及 0-5V 和 0-10V 可选模拟编程。广泛的可用输出允许测试许多不同的设备。半导体加工设备设计师欣赏广泛的输入范围 (85-265Vac) 和可根据应用选择的众多输出。可选安全和自动重启保护负载和过程完整性。典型应用包括磁铁、灯丝和加热器。航空航天和卫星测试复杂系统使用完整的 Genesys™ 系列:1U 750W 半机架、1U 750W 或 1500W 全机架、2U 3.3kW 和 3U 10/15kW。前面板、后面板模拟和数字接口命令均相同。多种输出允许测试许多不同的设备。激光二极管 OVP 直接在电压显示屏上设置,确保准确的保护设置。电流限制折返确保负载免受电流浪涌的影响。加热器电源平滑、可靠的编码器具有可选的精细和粗略调整功能,增强了前面板控制。远程模拟编程是用户可选择的 0-5V 或 0-10V,并且还提供可选的隔离编程/监控接口。射频放大器和磁铁 坚固的设计确保在各种负载下稳定运行。电压和电流模式下的高线性度。
o AES Indiana (AES IN) 在其 IRP 优化模型中为 BESS 分配了所有年份的 95% 容量认证。 o AES IN 在其 IRP 之前于 2023 年发布了全源征求建议书 (RFP),以对 BESS 进行定价。 平均投标成本得出的近期成本为 1,130 美元/千瓦。 • 这与彭博和 Wood Mackenzie 的价格预测非常一致。这些预测显示成本随着时间的推移而下降,到 2031 年将降至 800 美元/千瓦以下(名义上)。 根据 RFP 中的冬季容量需求和冬季太阳能的容量认证接近 0(而夏季的容量认证为 50%),开发商开始将投标从太阳能转向储能。 o AES IN 利用 Encompass 进行 IRP 建模,不限制模型在规划期的后几年内可选择的 BESS 数量,但根据 RFP 结果和 Midcontinent Independent System Operator (MISO) 互连队列的准备时间,限制前 5-7 年可再生能源和 BESS 的最大容量增加量。 它们包括 4 小时和 6 小时存储,并计划在未来的 IRP 中包括更长时间的存储。对于 6 小时存储,他们按比例增加了 4 小时存储的成本,就像建造一个更大的电池一样。 BESS 被分配了 16% 的容量系数,每天大约进行一次充电周期。 AES IN 将需求侧管理 (DSM) 建模为可选资源,并正在考虑在未来的 IRP 中添加分布式 BESS 作为可选资源。
CriMCE:一种通过 CRISPR 介导的盒式交换引入和分离精确无标记编辑的方法 Ioanna Morianou 1、Andrea Crisanti 1,2、Tony Nolan 3、Andrew M. Hammond 1,4,5 * * 通讯作者 作者隶属关系: 1 伦敦帝国理工学院生命科学系,伦敦,英国 2 帕多瓦大学分子医学系,帕多瓦,意大利 3 利物浦热带医学院媒介生物学系,利物浦,英国 4 约翰霍普金斯大学彭博公共卫生学院分子微生物学和免疫学系,巴尔的摩,马里兰州,美国 5 Biocentis,Ltd.,伦敦,英国 标题:基于 CRISPR 的无标记编辑方法 关键词:CRISPR;基因组编辑;盒式交换;无标记编辑;基因驱动。摘要 在昆虫基因组中引入小的、未标记的编辑对于研究重要生物学特性(例如抗杀虫剂和遗传控制策略)的分子基础至关重要。CRISPR 基因组工程的进步使这成为可能,但由于编辑率低和缺乏可选择的标记,大多数实验室都难以做到这一点。为了促进精确的无标记编辑的生成和分离,我们开发了一种两步方法,该方法基于 CRISPR 介导的盒式交换 (CriMCE),将标记的占位符用于感兴趣的变体。与以前的方法相比,此策略可用于引入更广泛的潜在编辑,同时整合工作流程。我们通过将三种 SNP 变体设计到冈比亚按蚊的基因组中,提出了原理证明,证明 CriMCE 是一种强大的工具,其编辑率比同源定向修复或主要编辑高 5-41 倍。
利什曼原虫是一种原生动物病原体,可导致利什曼病,这是一种被忽视的疾病,具有使人衰弱甚至可能危及生命的症状。利什曼原虫基因组非常动态,内容和结构均有变化。通常,这种高度变异(即可塑性),包括染色体和基因拷贝数变异、非整倍性和基因组重排,与其他生物体的 DNA 不稳定性有关。然而,在利什曼原虫中,这种固有的不稳定性可能被利用,不仅可以引入基因组异质性,还可以调节基因表达并产生增强适应性的特征。我们缺乏对这些寄生虫如何调节可塑性及其潜在后果的清晰而简洁的理解。因此,本研究课题的目的是汇总有关利什曼原虫利用基因组变异性为自己谋利的能力的重要报告,并收集有关基因组可塑性如何影响利什曼病的临床管理以及固有不稳定基因组的并发症对我们基因操作和研究这些非常规病原体的能力的值得注意的报告。拷贝数变异可以改变基因剂量,在利什曼原虫中,这些变化被认为促进了寄生虫种群的表型可塑性。在本研究课题中,Valdivia 等人报告了巴西利什曼病流行地区的寄生虫分离株之间的广泛基因组变异性,描述了在短短 2 年内种群中一种占主导地位的 L. infantum 核型被一个独特的亚群迅速取代。是否(以及哪些)环境因素可能导致种群中一种基因型相对于另一种基因型的扩张仍然未知。然而,这些分离株中保留的基因型多样性可能暗示着可选择的替代基因组库,这些基因组库可以响应外部刺激而快速扩增。尽管经常有关于利什曼原虫中 CNV 的报道,但这些变异对基因表达的影响和生物学后果也值得考虑,因为利什曼原虫似乎
目标受众:对使用扩散 MRI 流线纤维束成像定量评估大脑白质连接感兴趣的研究人员。目的:由于流线重建过程的非定量性质 [1],使用扩散 MRI 定量评估大脑白质连接非常困难。针对该问题提出的解决方案包括启发式校正已知的重建偏差 [2,3](可能无法补偿所有重建误差)或评估连接路径上某些扩散模型参数 [4,5,6](依赖于该参数的量化和可解释性)。最近,提出了球面反卷积信息纤维束成像滤波 (SIFT) 方法 [7],通过选择性去除流线,将重建的流线密度与通过扩散信号球面反卷积估计的单个纤维群体积 [8] 进行匹配;完成此过程后,连接两个区域的流线计数变为连接这些区域的白质通路横截面积的估计值(最高可达全局缩放因子)。之前已证明,如果首先应用 SIFT 方法 [9],大脑连接的定量测量与从人脑解剖估计的特性会更加密切相关。这种方法的缺点是,即使生成了许多流线(计算成本高昂),完成过滤后,流线密度可能非常低(这对于定量分析来说是不可取的 [10,11])。在这里,我们提出了一种替代解决方案,称为 SIFT2:此方法不是去除流线,而是为每条流线得出合适的加权因子,以使总流线重建与测量的扩散信号相匹配。方法:与原始 SIFT 方法一样,我们执行纤维方向分布 (FOD) 分割,将流线分配给它们穿过的 FOD 叶,并得出一个处理掩模,以减少非白质体素对模型的贡献。我们将离散 FOD 叶 L 的积分表示为 FOD L ,将归因于该叶的流线密度表示为 TD L ,将处理掩模 [7] 在该叶所占体素中的值表示为 PM L ;从这些中我们得出比例系数 μ [7](等式 1)。每条流线 S 都有一个关联的加权系数 FS 。FOD 叶 L 中的流线密度定义为(等式 2),其中 | SL | 是流线 S 穿过归因于 FOD 叶 L 的体素的长度。目标是找到一组加权系数 FS ,以最小化成本函数 f(等式 3),其中 λ 是用户可选择的正则化乘数,它将流线加权系数约束为与穿过相同 FOD 叶的其他流线相似(等式 4)。使用迭代线搜索算法可以找到解决方案:每个加权系数都经过独立优化,同时考虑一组相关项,这些相关项表示在对每个系数进行独立牛顿更新的情况下所有 L 的 TD L 的估计变化(等式 5)。数据采集和预处理:图像数据是从健康男性志愿者的 3T Siemens Tim Trio 系统(德国埃尔朗根)上采集的。DWI 协议如下:60 个弥散敏化方向,b =3,000s.mm -2,7 b =0 体积,60 个切片,2.5mm 各向同性体素。使用 MPRAGE 序列(TE/TI/TR = 2.6/900/1900ms,9° 翻转,0.9mm 各向同性体素)获取解剖 T1 加权图像。对弥散图像进行了校正以适应受试者运动 [12]、磁化率引起的扭曲 [13] 和 B 1 偏置场 [14]。使用约束球面反卷积 (CSD) [15] 估计纤维取向分布。使用 iFOD2 概率流线算法 [16] 生成了 1000 万条流线的纤维束图,该算法结合了解剖约束纤维束成像框架 [17] ,随机分布在整个白质中。结果:将 SIFT2 与执行 SIFT“收敛”(移除尽可能多的流线以实现与数据的最佳拟合 [7] )进行了比较。对于 SIFT2,我们使用了 λ = 0.001,这是基于近似 L 曲线分析选择的。SIFT 和 SIFT2 方法都以这样一种方式操纵重建,使得流线密度与通过 CSD 得出的体积估计值高度一致(图 1)。然而,SIFT2 实现了比 SIFT 更优秀的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须去除大约 96% 的流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。
Vertex Standard 编程软件允许用户通过设置频率、功能和参数来定制他们的 Vertex 无线电。该软件与 Windows 操作系统兼容,并允许用户:* 设置频道频率和隐私代码* 为无线电上的可编程键分配功能* 配置超时计时器和其他功能的延迟时间* 保存设置并使用相同配置对多个无线电进行编程注意:FIF-10 电缆已停产并由 FIF-12 取代。在线指南可帮助用户确定其特定无线电型号所需的 Vertex Standard 编程软件和必要的编程电缆。用户还可以获得所有 Vertex Land Mobile 无线电的可下载软件副本。必须注意的是,操作某些频率需要 FCC 许可证,如果发生未经许可的传输,可能会受到严厉处罚。YAESU 提供在订购无线电时免费获得许可证的帮助。如果只有 12 至 16 伏直流电源可用,则可选的 E-DC-5B 或 E-DC-6 直流适配器可用于为电池充电。 FNB-V57 高容量电池不能使用 NC-72 充电;相反,请使用 CD-16。为了抵抗互调型干扰,请在通向基站的同轴线上安装合适的 144-148 MHz 带通滤波器。如果您使用的是“B”版本(在欧洲),请按 T-CALL 开关以发送 1750 Hz 音调,以访问需要它的中继器。必要时,按 [VFO (PRI)] 按钮选择 VFO 模式。VX-150 有两个 VFO,分别标记为“A”和“B”,可用于本手册中描述的所有程序。ARS 功能可在调谐到标准中继器子带时提供中继器发射频率的偏移。启用后,将显示一个小的“-”或“+”,表示中继器偏移处于活动状态,关闭即按即说开关会将显示更改为(偏移的)发射频率。可以锁定 VX-150 的各个按键和开关,以防止意外更改频率或无意传输。接收省电模式使无线电设备在一段时间内处于休眠状态,然后定期将其唤醒以检查活动。如果有人在该频道上讲话,VX-150 将保持“活动”模式,然后恢复其“休眠”(正常)省电模式操作。当上次收到的信号非常强时,发射省电模式会自动降低功率输出水平。使用发射省电模式,自动选择低功率操作可显著节省电池消耗。VX-150 能够测量当前电池电压。按 [F] 键,然后按 [0 (SET)] 键进入设置模式。旋转 DIAL 选择菜单项 #37(“电池电量”)。按 [VFO (PRI)] 按钮可随时更改 VFO。只要调谐到标准中继器子带,ARS 就会提供中继器偏移发射频率。启用后,将显示一个小的“-”或“+”,表示中继器偏移处于活动状态。可能的锁定组合为: - 仅锁定前面板按键... - 参见第 18 页。VX-150 的一个重要功能是其接收省电模式,该模式可“使无线电设备休眠”一段时间,并定期“唤醒”以检查活动。如果有人在频道上讲话,VX-150 将保持“活动”模式,然后恢复其“休眠”...(正常)省电操作。VX-150 还包括一个有用的发射省电模式,当最后收到的信号非常强时,它将自动降低功率输出水平。使用发射省电模式,自动选择低功耗操作可显著节省电池消耗。VX-150 能够测量当前电池电压。按[F]键,然后按[0 (SET)]键进入设置模式。旋转 DIAL 选择菜单项 #37(“... 编程默认 VX-150 设置模式已在工厂分配给 [7 (P1)] 和 [8 (P2)] 键。如果要为键定义另一种设置模式,用户可以更改这些设置。完成选择后,按 PTT 键保存新设置并退出正常操作。 VX-150 有两个 VFO,分别标记为“A”和“B”,其中任何一个都可以用于本手册中描述的所有程序。您可以随时使用 [VFO (PRI)] 按钮更改 VFO。 基本操作 VX-150 中的 ARS(自动中继器异频)功能可在您调谐到标准中继器子带时提供中继器异频发射频率(见下图)。启用后,显示屏左上角将显示一个小的“-”或“+”,表示中继器异频处于活动状态,并关闭即按即说开关将显示更改为(移位的)发射频率。为了防止意外的频率更改或无意的发射,VX-150 的各个按键和开关可能被锁定。可能的锁定组合是:仅前面板按键被锁定... 请参阅第 18 页。VX-150 无线电允许各种存储信道设置,包括主信道和五组频带边缘存储器。要调用特定的存储信道,请在选择它后短暂按下 MR(跳过)键。在 CTCSS 解码或 DCS 操作期间,可以通过设置 VX-150 以在来电时用铃声提醒您来激活“铃声”。无线电的扫描功能使您能够扫描存储信道、整个操作频带或该频带的一部分。它会在遇到信号时停止,允许您与该频率上的电台通话。在扫描之前,选择扫描仪在信号上停止后应如何恢复扫描。此外,VX-150 还具有在扫描仪在信号上停止时自动点亮 LCD 灯的功能。可以按 [F] 键,然后按 [0 (SET)] 键进入设置模式,然后选择所需设置,以禁用扫描灯。该电台的扫描功能还包括双通道扫描功能,让您可以在 VFO 或记忆信道上操作,同时定期检查用户可选择的优先信道是否活动。要激活此功能,请按 [F] 键,然后按住 [VFO (PRI)] 键。此外,VX-150 的 16 键键盘提供 DTMF 操作,可轻松拨号以进行自动补丁或中继器控制。键盘包括数字,以及常用于中继器控制的音调。最后,无线电的 CW IDENTIFIER SETUP 允许您设置 CW ID 功能,方法是按 [F] 键启用此菜单项的更改,然后旋转 DIAL 选择所需的设置。操作年度 VX-150 分组 TNC 操作说明和重置 VX-150 无线电可用于分组操作,配有可选的 CT-44 麦克风适配器,可通过常用连接器或构建自定义电缆轻松连接到 TNC。便捷的“克隆”功能允许将内存和配置数据从一个收发器传输到另一个收发器,这在公共服务操作中很有用。要激活设置模式:按 [F] 键,然后按 [0 (SET)] 键,使用 DIAL 选择菜单项编号,然后根据需要进行调整。设置: * 设置模式选项:5/10/12.5/15/20/25/50 kHz * 默认值取决于对讲机版本 * 恢复功能:+ 可用值:5 秒/忙碌/保持 + 默认值:5 秒 * ARTS 轮询间隔:15 秒/25 秒(默认值:15 秒) * 键盘蜂鸣器:开/关(默认值:开) * 繁忙信道锁定:开/关(默认值:关) 其他设置: * 超时计时器:关/1 分钟/2.5 分钟/5 分钟/10 分钟(默认值:关) * CW 标识符:编程并激活以用于 ARTS 操作 * 智能搜索:按照第 23 页的详细说明激活该功能 * 电源电压指示器:按 [F] 键,然后按 PTT 键退出正常操作 注意: * 未经 Yaesu Musen 批准的更改或修改可能会使操作此设备的授权失效。 * 本设备符合 FCC 规则第 15 部分。要进行调整或设置特定音频频率:按住 F 键并将主拨盘转到所需设置。按 PTT 按钮保存。如果您需要设置 PL 音频,请在按下 F 键后快速按下 1/SQ TYP 键,然后旋转直到出现 TN ENC。接下来,按住 F 键,然后按下 2/CODE 键,并将拨盘调整到您喜欢的音频频率。要将其存储在内存信道中:按照设置频率及其设置的步骤操作,然后按住 F 键一秒钟,然后旋转拨盘以选择内存插槽号并保存。要访问存储的频率或扫描这些频率,请按 MR/SKIP 键进入 MR 模式。选择所需的存储频道或在 MR 模式下短暂按住其中一个 MHz 键以开始扫描已保存的频道。按 PTT 停止扫描,然后使用 F 键,然后按 MR/SKIP 键暂时跳过不需要的频道。要取消跳过频道,请重复此过程。