人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
引用Reinke,Aaron W.,Robert A.Grant和Amy E. Keating。“合成的盘绕螺旋相互作用组为分子工程提供了杂种模块。”J.am。化学。Soc。,2010,132(17),pp 6025–6031。
图 1 | 使用 DNA 支架形成 Cy3 聚集体的化学方法。 (a) Cy3 (左) 共价连接到单链 DNA (ss-DNA) 脱氧核糖磷酸骨架的 3' 和 5' 端。 Cy3 修饰的 DNA 纳米结构是通过将 Cy3 修饰的 ssDNA 与规范互补的 ssDNA 链杂交而形成的,如连接到 DNA 双链体的 Cy3 单体的分子动力学快照 (中间) 和示意图 (右、上) 中蓝色椭圆表示 Cy3 所示。 Cy3 二聚体和三聚体是通过将连续的 Cy3 发色团连接到 ssDNA 并与互补链杂交而形成的 (右、中和下) (b) Cy3 单体 (棕色)、二聚体 (蓝色) 和三聚体 (绿色) 的吸光度 (实线) 和量子产率归一化的荧光光谱 (虚线)。 [DNA 双链] = 0.5 µ M,溶于 40 mM Tris、20 mM 醋酸盐、2 mM 乙二胺四羧酸 (EDTA) 和 12 mM MgCl 2 (TAE-MgCl 2 缓冲液)。(c) 双链中 Cy3 单体、二聚体和三聚体的荧光量子产量 (ΦF)。[DNA 双链] = 0.5 µ M,溶于 1 × TAE-MgCl 2 缓冲液。(d) Cy3 单体、二聚体和三聚体的圆二色性 (CD) 光谱。(e) Cy3 单体、二聚体和三聚体的荧光衰减轨迹,仪器响应函数以黑色显示。
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。
摘要。文本对图像合成是机器学习中最具挑战性和最受欢迎的任务之一,许多模型旨在提高该领域的性能。深融合生成的对抗网络(DF-GAN)是图像生成的直接但有效的模型,但它具有三个关键局限性。首先,它仅支持句子级文本描述,从而限制了其从文字级输入中提取细颗粒特征的能力。第二,可以优化残差层和块的结构以及关键参数,以提高性能。第三,现有的评估指标,例如FréchetInception距离(FID),倾向于不适当地强调无关紧要的功能,例如背景,当重点放在生成特定对象上时,这是有问题的。为了解决这些问题,我们引入了一个新的文本编码器,该编码器增强了具有处理单词级描述能力的模型,从而导致更精确和文本一致的图像生成。此外,我们优化了关键参数,并重新设计了卷积和残留网络结构,从而产生了更高质量的图像并减少了运行时间。最后,我们提出了一种量身定制的新评估理论,以评估生成图像中特定对象的质量。这些改进使增强的DF-GAN在有效地产生高质量的文本分配图像方面更有效。
目前的工作旨在根据基于锆石矿物质在各种钙化温度下制造Na1ÞX Zr 2 Si X P 3-X O 12化合物。在250、500和1000 C中钙化了制造的化合物。钙化温度对制造化合物的结构,晶相和辐射屏蔽特性的影响。X射线衍射衍射仪表明,单斜晶相出现在250 c的钙化温度下,500°C完全转化为高度对称性六边形晶体相。 122Kev。在本研究中对钙化温度对G射线屏蔽行为的影响进行了清晰的影响,当钙化温度从250 C的250 C升高到1000 C时,线性衰减系数在122KeV时的影响增加了218%。©2023韩国核协会,由Elsevier Korea LLC出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
尽管神经辐射场 (NeRF) 在图像新视图合成 (NVS) 方面取得了成功,但 LiDAR NVS 仍然基本上未被探索。以前的 LiDAR NVS 方法采用了与图像 NVS 方法的简单转变,同时忽略了 LiDAR 点云的动态特性和大规模重建问题。鉴于此,我们提出了 LiDAR4D,这是一个可微分的 LiDAR 专用框架,用于新颖的时空 LiDAR 视图合成。考虑到稀疏性和大规模特性,我们设计了一种结合多平面和网格特征的 4D 混合表示,以由粗到细的方式实现有效重建。此外,我们引入了从点云衍生的几何约束来提高时间一致性。对于 LiDAR 点云的真实合成,我们结合了光线丢弃概率的全局优化来保留跨区域模式。在 KITTI-360 和 NuScenes 数据集上进行的大量实验证明了我们的方法在实现几何感知和时间一致的动态重建方面具有优越性。代码可在 https://github.com/ispc-lab/LiDAR4D 获得。
增加饱和脂肪酸与磷脂的相对结合。因此,利用脂肪酸进行磷脂生物合成的步骤之一是温度控制的。在体内观察到的 3H-油酸和“C-棕榈酸混合物的温度效应可以通过使用这些脂肪酸的辅酶 A 衍生物的混合物将 a-甘油磷酸酰化为溶血磷脂和磷脂酸来在体外证实。在大肠杆菌提取物中,棕榈酰和油酰辅酶 A 的相对转酰速率随孵育温度而变化,其方式模拟体内观察到的温度控制。体外合成的磷脂酸在 d 位显示出油酸的显著富集,类似于体内合成的磷脂中观察到的位置特异性。
通过康普茶微生物合成细菌纤维素在培养基上具有可变成分的养分成分Izabela betlej,Krzysztof J. Krajewski木材科学与木材保护系,木材技术学院,生命科学学院,科学科学摘要:细菌性纤维素纤维素合成,由knoboclocha micrororororgans of Nivients of Nivient of Nivient of Nivient of Nivient of Nivient of Animorororororerororerororerororormermismiss o an n a Indivients o and raimor of Animer of An I介绍。本文提出了评估各种蔗糖含量的影响的结果,以及康普茶微生物对合成效率和获得的细菌纤维素质量的生长培养基中各种氮化合物的存在。对获得的研究结果的分析表明,康普茶微生物合成纤维素合成的效率取决于生长培养基中可用的营养的数量和质量。关键词:细菌纤维素,康普茶,碳和氮源从化学的角度引入,细菌纤维素与植物纤维素相同,但是它具有比从植物组织中得出的纤维素更高的特征。首先,它的特征是高纯度,这是由于缺乏木质素和半纤维素,高结晶度,形成任何形状的易感性,高的吸湿性和非常高的机械强度以及高生物学兼容性[5,8,10]。这些功能保证了在各个行业使用细菌纤维素的绝佳机会。细菌纤维素已经成功地用于医学,作为敷料材料或外科植入物,作为生物传感器,以及食品,药房和造纸工业[7]。Fan等。Fan等。在造纸工业中,细菌纤维素主要用于漂白废纸,作为印刷缺陷的填充物[6]。在木工和包装行业中使用纤维素似乎也是潜在的。细菌纤维素是由细菌和酵母菌的大量微生物合成的。在纤维化微生物中,属于属的生物体:乙酰杆菌,动杆菌,achromobacter,achromobacter,agrobacterium,agrobacterium,psedomonas和sarcina [1]。这些微生物经常以企业化,生物膜的形式出现,通常被描述为“ Scoby”。尽管有许多独特的物理化学特征和非常有前途的应用观点,但在大规模上使用细菌纤维素会带来一些困难。这主要是由于生产成本仍然很高,生产率较低。高产量的合成产量不仅取决于培养方法,这与营养物质的可用性有关,还取决于微生物的动态相互作用。个体菌株的营养需求差异很大。Ramana和Singh [9]发现,乙型杆菌开发的最佳碳源,Nust4.1菌株,是葡萄糖,微生物和纤维素合成的生长进一步增加了,在存在硫酸钠的存在下,乙型甲基菌的生长,BRC菌株的生长,是乙醇,是乙醇的其他动态,是其他动态的。使用可变来源的碳和氮来对纤维素合成效率进行评估。[3]评估了底物上细菌纤维素的合成和质量,并增加了食品工业的废物。在这项工作中,尝试使用三种类型的培养基来评估通过包含的微生物菌株来评估细菌纤维素合成的效率,这些培养基的含量和氮源的可用性不同。
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了