加州高速铁路管理局(管理局)负责规划、设计、建造和运营加州的高速铁路系统。该系统将连接和改造加州。管理局的使命是提供安全可靠的高速列车系统,该系统采用能够持续保持 200 英里每小时或更高的速度的路线和技术。指导决策的三项原则包括:(1) 尽快在加州启动高速铁路服务;(2) 进行战略性、同步性投资,这些投资将随着时间的推移而联系在一起,并尽早提供流动性、经济和环境效益;(3) 在资金到位时让管理局建造更多路段。第一阶段系统的设计目标是在三个小时内以超过 200 英里每小时的速度从旧金山穿过中央谷地到洛杉矶/阿纳海姆,全程约 494 英里。第二阶段最终将把系统延伸到萨克拉门托和圣地亚哥,总长 800 英里,最多有 24 个车站。
摘要 目的。电刺激是人工调节神经系统活动的有效方法。然而,目前的刺激模式无法重现自然神经活动的随机性和异步性。在这里,我们介绍了一种克服这些限制的新型仿生刺激 (BioS) 策略。方法。我们假设高频幅度调制刺激脉冲可以通过在脉冲持续时间内分配募集来诱发异步神经放电,而不会牺牲精确控制神经活动的能力。我们使用计算机模拟和离体实验测试了这一假设。主要结果。我们发现 BioS 脉冲会诱发异步、随机但可控的神经活动。我们确定,改变 BioS 脉冲的幅度、持续时间和重复频率可以对募集的纤维数量、它们的放电率及其反应的同步性进行分级调节。意义。这些结果证明了对人工诱导神经活动的控制达到了前所未有的水平,使得设计下一代 BioS 范式成为可能,对神经刺激领域产生深远的影响。
复发性癫痫是指大脑电活动的短暂异常。癫痫发作的机制基础以及定义的神经元亚型对癫痫病理生理学的影响仍不清楚。我们在雄性和雌性 Dravet 综合征 (Scn1a / ) 小鼠(一种具有显著温度敏感性癫痫的神经发育障碍)中,在温度诱发癫痫发作期间对大脑皮层进行了体内双光子钙成像。在基线和升高的核心体温后安静清醒状态下,Scn1a / 小鼠的假定主细胞和小白蛋白阳性中间神经元 (PV-IN) 的平均活动均高于野生型对照。然而,野生型 PV-IN 显示出对温度升高的进行性同步,而 Scn1a / 小鼠的 PV-IN 则没有这种同步。因此,Scn1a / 小鼠的发作间期 PV-IN 活性保持完整,但在癫痫发作前立即表现出同步性降低。我们认为,在 Dravet 综合征中,PV-IN 同步受损可能导致温度诱发癫痫期间转变为发作状态。
科学文献中已经通过多种技术广泛分析了与效价/唤醒空间的四个象限相对应的情绪状态的识别。然而,这些方法中的大多数都是基于对每个大脑区域的单独评估,而没有考虑不同区域之间可能存在的相互作用。为了研究这些相互联系,本研究首次计算了称为跨样本熵的功能连接指标,用于分析来自脑电信号的四组情绪的大脑同步。结果报告了中央、顶叶和枕叶区域之间的互连具有很强的同步性,而左额叶和颞叶结构与其他大脑区域之间的相互作用表现出最低的协调性。这些差异对于四组情绪具有统计学意义。所有情绪同时被分类,准确率为 95.43%,超过了以前研究报告的结果。此外,考虑到对应维度的状态,效价和唤醒的高低水平之间的差异也提供了关于不同情绪条件下大脑同步程度的显著发现,以及可能的
在生命的最初几年,大脑会响应环境刺激而发生实质性的组织。在寂静的世界中,大脑可能通过 (i) 从听觉皮层招募资源和 (ii) 使视觉皮层更有效率来促进视觉。目前尚不清楚这些变化何时发生以及它们的适应性如何,植入人工耳蜗的儿童可以帮助解决这些问题。在这里,我们检查了 7-18 岁的儿童:50 名儿童植入了人工耳蜗,语言能力发育迟缓或与年龄相符,25 名儿童的听力和语言能力正常。高密度脑电图和功能性近红外光谱用于评估皮层对低级视觉任务的反应。有证据表明,语言发育迟缓的植入儿童存在“视觉皮层反应较弱”和“听觉联想区同步性较差或抑制性较差”的情况,这表明跨模态重组可能具有不良适应性,并不一定会增强主导视觉。
神经元活动与其所体现的计算之间的关系仍然是一个悬而未决的问题。我们开发了一种新颖的方法,该方法将观察到的神经元活性凝结成一种定量准确,简单且可解释的模型,并在从秀丽隐杆线虫中的单个神经元到人类fMRI的各种系统和尺度上验证它。该模型将神经元活性视为互锁一维轨迹的集合。尽管它们具有同步性,但这些模型还是准确地预测了人类参与者做出的未来神经元活动和未来的决策。此外,由互连轨迹形成的结构(脚手架)与系统的计算策略密切相关。我们使用这些SCAF-folds比较了在同一任务上训练的灵长类动物和人工系统的计算策略,以识别人造代理人学习与灵长类动物相同策略的特定条件。使用我们的方法论提取的计算策略预示了新型刺激的特定错误。这些结果表明,我们的方法是研究各种系统之间计算与神经元活动之间关系的强大工具。
工作记忆与前额叶-海马振荡同步相关,但同步大脑节律的内源性模式是否可用于影响未来选择仍不得而知。在这里,我们开发了一个脑机接口,用于检测强和弱的 θ 同步状态,以进行任务和神经操控。强前额叶-海马 θ 相干性状态的特点是前额叶 θ 节律增强,并用于增强记忆引导的选择。在后续实验和分析中,我们表明强前额叶-海马 θ 相干性与任务参与、前额叶神经元对腹中线丘脑 θ 的相位调制以及一组选定神经元的兴奋性增强有关。通过对腹中线丘脑的光遗传学操控,我们产生了前额叶 θ 节律并增强了前额叶-海马振荡同步性。这些实验表明,前额叶-海马振荡同步可用于偏向记忆引导的选择,并为通过连贯性假设进行交流提供支持证据。
1伦敦大学学院化学系,伦敦戈登街20号,WC1H 0AJ,英国2物理与天文学系,乌普萨拉大学,乌普萨拉大学,邮箱516,75120 Uppsala,瑞典3号,瑞典3化学系 - Ångström实验室,Uppsala Universiti联邦材料科学技术实验室,加入技术和腐蚀的实验室,瑞士,瑞士5号,基尔大学实验和应用物理研究所,基尔大学,德国24098,德国6 Ruprecht Haensel实验室,Deutsches,Elektronen-synchrotron desy,226607 Hamburg,Elektronen-synchrotron desy,德国Mainz,55128InstitutFürPhysikInstitutfürphysik Institut f-75005 sorbonne Universit'E,CNRS,CNRS,CNRS,CNRS,Laboratoire de Chimie体格 - Mati eRe et rayonnement,LCPMR,F-75005 Paris,Paris,Paris,Paris,France 9 France of Thressics of Thressics of Temple University,Paradelofia伯克利,加利福尼亚州94720,美利坚合众国11德国埃莱克特伦 - 同步性Desy,22607汉堡,德国
摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
摘要:本研究的目的是检查功率谱并探索注意力表现过程中的功能性大脑连接/断开情况,以注意力 d2 测试和创造力测试为衡量标准,以正常发育儿童的 CREA 测试为衡量标准。为此,我们通过使用相位同步性(即锁相指数 (PLI))对 15 名 9 至 12 岁儿童通过 Emotiv EPOC 神经耳机获取的 EEG 信号进行检查来检查大脑连接。此外,作为补充,还对获取的信号进行了功率谱分析。我们的结果表明,在 d2 测试过程中,全局伽马相位同步增加,而全局 alpha 和 theta 波段去同步。相反,在 CREA 任务期间,功率谱分析显示 delta、beta、theta 和 gamma 波段显著增加。连接分析显示 theta、alpha 和 gamma 明显同步。这些发现与其他神经科学研究一致,表明多种大脑机制确实与创造力有关。此外,这些结果对于在临床和研究环境中评估注意力功能和创造力以及对具有正常和非正常发育的儿童的神经反馈干预具有重要意义。