固氮酶催化 N2 还原为铵 (1)。固氮酶由两种蛋白质组成,即二氮酶 (组分 I,Mo-Fe 蛋白) 和二氮酶还原酶 (组分 II,Fe 蛋白) (1, 3)。二氮酶含有一个独特的辅基,即铁钼辅因子 (FeMo-co),由 Fe、Mo 和 S (15) 组成。生化和遗传研究表明,至少有六种 nif (固氮) 基因产物参与了 FeMo-co 的生物合成。含有 nifB、nifN 或 nifE 突变的肺炎克雷伯菌菌株无法合成 FeMo-co (12, 15)。在含有低水平钼酸盐的培养基中,当固氮酶被解除抑制时,nifQ 突变的菌株不会合成 FeMo-co (8)。某些含有 nifH(编码二氮酶还原酶)突变的肺炎克雷伯菌和棕色固氮菌菌株无法积累 FeMo-co(2, 13)。从含有 nifV 突变的肺炎克雷伯菌菌株中分离出的二氮酶表现出改变的底物亲和力和抑制剂敏感性(10)。进一步的研究表明,NifV 突变体在 FeMo-co 合成方面存在缺陷(4)。最近,描述了一种体外合成 FeMo-co 的系统,该系统需要 ATP、钼酸盐、nifB、nifN 和 nifE 的基因产物(17)、二氮酶还原酶(未发表的数据)和同型柠檬酸(6)。肺炎克雷伯菌对同型柠檬酸的积累与功能性 nifV 基因的存在有关,该基因显然编码同型柠檬酸合酶(7)。在解除固氮酶抑制期间,发现高柠檬酸在肺炎克雷伯氏菌培养物培养基中积累 (6)。我们在此报告,向肺炎克雷伯氏菌 NifV 突变体培养基中添加高柠檬酸可治愈该表型。肺炎克雷伯氏菌 UN 是从菌株 M5al 中重新分离的野生型菌株,该菌株最初来自 PW Wilson 的收藏。菌株 UN1991 (nifV4945) 是一种稳定的 NifV 突变体,回复频率为 3 x 10-10(T. MacNeil,博士论文,威斯康星大学麦迪逊分校,1978 年),之前已有描述 (9)。肺炎克雷伯氏菌突变体中的生长和固氮酶解除抑制已被描述 (8)。从肺炎克雷伯菌 (6) 培养物的去阻遏培养基中分离出 (R)-2-羟基-1,2,4-丁烷三羧酸 (高柠檬酸)。将高柠檬酸添加到 UN1991 培养物中,最终浓度约为 83 mg * 升-' (0.4 mM)。用 DEAE-纤维素色谱法 (14) 从菌株 UN、UN1991 和 UN1991 中纯化二氮酶,这些菌株在高柠檬酸存在下已对固氮酶进行了去阻遏。已描述了乙炔和 N2 还原测定
单克隆抗体(mAb)彻底改变了临床医学,尤其是在癌症免疫疗法领域。现在的挑战是提高缓解率,因为许多患者的免疫疗法仍然失败。增强肿瘤细胞死亡的策略是一个基本目的,但缺乏针对人类肿瘤免疫学的相关模型系统。在此,我们开发了一种临床前人类免疫 - 三维(3D)肿瘤模型(球体),以绘制肿瘤特异性同种型的效率,以改善肿瘤细胞的杀伤。单独或组合不同的抗CD20利妥昔单抗(RTX)同种型,评估了3D球体中人类单核细胞的补体依赖性细胞毒性和抗体依赖性的吞噬作用,并与单层培养物平行,与人类CD20 + B-Cell lymphom的单层培养物平行。我们证明,RTX的IgG3变体比其他同种型具有最大的肿瘤作用,并且当与凋亡诱导的RTX-IGG2同种型型相结合时,治疗效果可以逐渐增强。结果进一步表明,RTX同种型的治疗结果受肿瘤形态和补体抑制剂CD59的表达的影响。因此,人类免疫-3D肿瘤模型是一种临床相关且有吸引力的离体系统,可预测mAb,以在癌症免疫疗法中获得最佳功效。