2.1 研究动机 ................................................................................................................................................ 11 2.2 最新技术 ................................................................................................................................................ 12 2.3 本研究贡献 ................................................................................................................................................ 13 2.3.1 使用现代工具对四轴飞行器进行动态建模 ............................................................................................. 13 2.3.2 四轴飞行器的系统控制 ............................................................................................................................. 14 2.3.3 触觉系统控制 ................................................................................................................................ 14 2.4 直升机 VS 其他飞行原理 ............................................................................................................................. 14 2.4.1 短距 VTOL 配置比较 ............................................................................................................................. 15 2.4.2 未来无人机的 VTOL 配置 ............................................................................................................. 16 2.4.2.1 同轴配置 ................................................................................................................................ 16 2.4.2.2 四轴飞行器配置........................................................................................................... 17 2.5 什么是触觉技术? ...................................................................................................................................... 17 2.5.1 触觉系统控制的相关研究 ........................................................................................................ 18 2.5.2 触觉控制器 ................................................................................................................................ 19 2.5.3 触觉控制器的应用 ...................................................................................................................... 20 2.6 结论 ...................................................................................................................................................... 22
后面板是平衡模拟立体声和监视器输出以及四个平衡“全向”输出的所在地。01V96 内置 ADAT 接口的光学 IN 和 OUT 连接器也位于后面板。还有带同轴连接器的数字 2 轨输入和输出。板载采样率转换允许 CD 播放器和其他连接到数字输入的数字源被监控或路由到输入通道,而无需与系统时钟同步。可通过字时钟输入和输出、MIDI 连接器和 USB“TO HOST”连接器提供一系列同步和控制选项,这些连接器可用于通过提供的 Studio Monitor 软件进行计算机控制。后面板还有一个扩展槽,可以接受各种 Yamaha mini-YGDAI 扩展卡,这些扩展卡可以添加多达 16 个各种格式的额外通道。
三十多年来,Amphenol CIT 一直为航天应用(地球轨道及更远、载人和无人任务)提供高可靠性 RF 同轴电缆组件(柔性和半刚性)。凭借针对 Amphenol CIT 电缆量身定制的坚固的 Amphenol CIT 连接器设计,可打造优化的电缆组件,我们在提供微波传输线产品方面拥有丰富的经验,这意味着您可以与我们合作,为您提供经过验证的解决方案,以应对您最苛刻的航天技术挑战,包括 V 波段的工作频率、功率处理(CW、多路复用器、电离)、PIM、辐射、热真空和低温操作等。Amphenol CIT 产品已通过多项特定项目要求的认证,并可根据 NASA EEE-INST-0002 和 ESCC 3408 提供。
摘要:本文介绍了石墨和还原氧化石墨烯 (RGO) 反射率的研究,这是电子设备保护的重要参数。这些材料应保护电子电路免受外部和内部反射辐射的影响。研究重点是比较两种材料在金属层上的反射率。对纯材料(不含任何添加剂,如聚苯乙烯泡沫、树脂、蜡等)进行了介电常数和磁导率等恒定电磁参数的测量。测量是在 100 MHz 至 10 GHz 微波频率范围内的同轴线上进行的。测量显示反射功率值很高,石墨的反射功率超过 90%,而 RGO 仅反射 80% 的入射功率。此外,由于还原氧化石墨烯中的半波长效应,反射系数降低至 70%。
2.1 研究动机 ................................................................................................................................................ 11 2.2 最新技术 ................................................................................................................................................ 12 2.3 本研究贡献 ................................................................................................................................................ 13 2.3.1 使用现代工具对四轴飞行器进行动态建模 ............................................................................................. 13 2.3.2 四轴飞行器的系统控制 ............................................................................................................................. 14 2.3.3 触觉系统控制 ................................................................................................................................ 14 2.4 直升机 VS 其他飞行原理 ............................................................................................................................. 14 2.4.1 短距 VTOL 配置比较 ............................................................................................................................. 15 2.4.2 未来无人机的 VTOL 配置 ............................................................................................................. 16 2.4.2.1 同轴配置 ................................................................................................................................ 16 2.4.2.2 四轴飞行器配置........................................................................................................... 17 2.5 什么是触觉技术? ...................................................................................................................................... 17 2.5.1 触觉系统控制的相关研究 ........................................................................................................ 18 2.5.2 触觉控制器 ................................................................................................................................ 19 2.5.3 触觉控制器的应用 ...................................................................................................................... 20 2.6 结论 ...................................................................................................................................................... 22
2.1 研究动机 ................................................................................................................................................ 11 2.2 最新技术 ................................................................................................................................................ 12 2.3 本研究贡献 ................................................................................................................................................ 13 2.3.1 使用现代工具对四轴飞行器进行动态建模 ............................................................................................. 13 2.3.2 四轴飞行器的系统控制 ............................................................................................................................. 14 2.3.3 触觉系统控制 ................................................................................................................................ 14 2.4 直升机 VS 其他飞行原理 ............................................................................................................................. 14 2.4.1 短距 VTOL 配置比较 ............................................................................................................................. 15 2.4.2 未来无人机的 VTOL 配置 ............................................................................................................. 16 2.4.2.1 同轴配置 ................................................................................................................................ 16 2.4.2.2 四轴飞行器配置........................................................................................................... 17 2.5 什么是触觉技术? ...................................................................................................................................... 17 2.5.1 触觉系统控制的相关研究 ........................................................................................................ 18 2.5.2 触觉控制器 ................................................................................................................................ 19 2.5.3 触觉控制器的应用 ...................................................................................................................... 20 2.6 结论 ...................................................................................................................................................... 22
Geislinger 扭转弹性联轴器采用了与碳纤维太阳轴类似的尝试。全钢动力传动系部件可集成到变速箱中,并为中速传动系同轴行星变速箱的第二级或第三级太阳轴引入扭转弹性。在高速变速箱中,联轴器可完全集成到并联级的第二个齿轮中。在这两种解决方案中,Geislinger 联轴器提供的系统扭转弹性降低可将共振频率移至较低水平,并可完全隔离系统与振动(参见振幅比较)。它集成到大型内燃机的凸轮轴驱动齿轮中,已经是一种经过验证、证明且广泛使用的解决方案,可降低船舶推进系统中的结构噪声。
xDSL(数字用户线)或 XDSL 技术使用传统的铜质电话线。DSL 技术涵盖多个版本,例如 ADSL、VDSL、HDSL 等。这些技术旨在增加传统铜质电话线的带宽。数据传输速度取决于家庭或企业与提供 DSL 服务的电话公司总部之间的距离。 有线互联网是一种技术和服务,它使用现有的电视网络(由将电视信号传输到电视机的同轴电缆连接组成)以极高的速度将数据从互联网传输到选定的计算机。要通过有线系统访问互联网,需要使用电缆调制解调器。 光纤能够以脉冲或光的形式更快地传输数据。数据传输速率介于 10 Mb/s 到 1 Gb/s 以上之间。
AAL-5 56, 452 交流电源 198 便携式 262 交流电源/分析仪 198–201 交流/直流电流探头(示波器) 135 接入环路测试 62, 418, 422, 535 附件 适配器 APC-3.5 569, 570 APC-7 569, 570 用于网络分析仪 287,290, 300 通用 569, 570 用于定时发生器 409 概述/订购信息 569, 570 楔形探头适配器 132, 393, 394 鳄鱼夹引线 369 衰减器 322–325 衰减器/开关驱动器 317 BNC 套件 294 电路板测试和检查 535 有线电视分析仪 528, 529 电缆 50欧姆 409 和适配器 568–570 天线 509 HP 11679A/B 延长线 279 HP 85022A 系统电缆套件 279 HP-IB 互连 568 IEC-320 跳线 567 匹配 369 功率传感器 309 RF 294 测试端口 294, 300, 301 耦合器,同轴 328 延迟线,22 纳秒 128 检波器,同轴 326, 327 数字万用表 161, 162 EMC 分析仪 336, 338, 339 频率和时间标准 509 GPS 天线 509 高功率脉冲发生器 408 阻抗/增益相位分析仪 359 Infiniium 示波器 125 LCR 仪表 366, 367 光波 428 逻辑分析仪 393, 394 微波网络分析仪 301 万用表 161, 162 网络分析仪 微波网络分析仪 297, 301 射频网络分析仪 290 矢量电压表和输入模块 298 噪声系数和标量测量 258 示波器 52, 125, 128 功率分配器 294 探头 有源探头 52, 134, 262, 272 电流探头 135, 162, 339 介电探头套件 363 弹性探头 393, 394
摘要 为了开发可靠的高速封装,倒装芯片工艺中使用的底部填充材料的特性分析变得越来越重要。底部填充材料通常是一种环氧树脂基材料,可为封装上的集成电路 (IC) 提供热和结构优势。由于如此多的输入和输出 (IO) 彼此靠近,封装上的集成电路可能会出现意外的信号和电源完整性问题。此外,芯片封装只能支持最高频率的信号,在此频率下噪声耦合(例如串扰、开关噪声等)会导致系统故障。垂直互连(例如通孔和焊料凸块)是噪声耦合的主要来源。在每个信号网络之间插入接地参考是不切实际的。对于焊料凸块,噪声耦合取决于底部填充材料的介电常数。因此,表征底部填充材料的介电常数有助于预测信号和电源完整性问题。这种液体或半粘性材料通常通过浸入材料中的开端同轴探针的简单边缘电容模型来表征。但是,开口同轴方法不如基于谐振器的方法准确。需要一种方法来准确提取高频下液体或半粘性材料的介电常数。所提出的方法使用实壁腔体谐振器,其中谐振器用底部填充材料填充并固化。介电特性分析是一个复杂的过程,其中必须了解或准确测量腔体的物理特性。这包括导体的电导率、导体的粗糙度、腔体的尺寸和端口引脚位置。本文讨论了在使用腔体谐振器表征介电体时遇到的一些挑战。这种表征方法也可用于表征其他感兴趣的材料。关键词介电体、倒装芯片、介电常数、谐振器、底部填充。