Figure 7.Chest CT scan 16 months after surgery: (A) Lung window shows multiple small nodular lesions in both lungs, with a high possibility of bilateral lung metastases, changes compared to previous scan not significant.(B) Bone window shows bone destruction at the posterior edge of the T8 vertebral body and its attachments, indicating a high possibility of bone me- tastasis; (C) and (D) are upper abdominal MR scans 16 months after surgery, showing a nodular abnormal signal shadow with a long diameter of approximately 33mm in the left adrenal area, with slight uneven enhancement.The nodular abnormal signal shadow in the left adrenal area has significantly increased compared to before, indicating a high possibility of metastatic tumor 图 7.术后 16 个月胸部 CT , (A) 肺窗示双肺多发小结节灶,考虑双肺转移瘤可能性大,较前变化不明显, (B) 骨窗 示约 T8 椎体后缘及附件骨质破坏,骨转移可能性大; (C) (D) 术后 16 个月上腹 MR ,左侧肾上腺区可见长径约 33 mm 的结节状异常信号影,不均匀轻度强化,左侧肾上腺区结节状异常信号影,较前明显增大,考虑转移瘤可能性大
滚转和偏航,以及飞机中这些状态的控制,是通过分别改变对升降舵、副翼和方向舵的指令信号来实现的。在本文中,我们仅考虑飞机的两种控制运动,即纵向和滚转运动。这两个控制面是用不同的智能控制器设计和实现的。飞机的这两种运动在飞行过程中很重要,在此期间飞机会从一种状态过渡到另一种状态。为了控制飞机的纵向和滚转运动,分别使用了一组称为升降舵和副翼的控制面。升降舵是位于固定翼飞机后部的可移动控制面,铰接在水平稳定器的后缘,与主翼平行运行,导致飞机旋转,导致飞机爬升和下降,并从机翼获得足够的升力,使飞机以各种速度保持平飞。升降舵是可移动的控制面,可以上下移动。如果升降舵向上旋转,则会减少尾部的升力,导致尾部降低而机头抬高。如果升降舵向下旋转,则会增加尾部的升力,导致尾部抬高而机头降低。降低飞机机头会增加前进速度,而抬高机头会降低前进速度 [1]。
在针对先进半导体的出口管制修补的同时,政策辩论也在不断升温,即是否以及如何应对中国在传统工艺节点(也通常被称为基础、后缘、成熟、关键或主流芯片)上建设半导体产能带来的潜在威胁。2023 年美国商务部《芯片法案》将传统芯片定义为基于 28 纳米或更大工艺节点制造的半导体,不同于前沿半导体,美国在 2022 年出口管制中将前沿半导体定义为基于 16/14 纳米或以下工艺节点制造的逻辑芯片。从高度专业化的 28 纳米微控制器到现成的 350 纳米功率组件,各种芯片都属于传统芯片类别。尖端服务器、图形、笔记本电脑和智能手机处理器依靠极紫外光刻技术,在高度复杂的制造过程中,在 (5 纳米以下) 工艺节点上每平方毫米封装越来越多的晶体管。相比之下,较为低调的传统芯片可以在老一代的DUV光刻设备上制造,对晶圆生产的要求较低。
概述了风力涡轮机的基本噪声源及其对整体声级的相对重要性,以及管理农场级噪声的方法。介绍了几种降噪概念,然后讨论了风力涡轮机运行如何影响远场声音。首先,设计了几种叶片尖端几何形状,并在 2.5 MW 级风力涡轮机平台上进行了测试。结果表明,尖端形状会显著影响叶片噪声特征。与基线尖端相比,低噪声尖端形状可使表观声功率级 (Lwa) 降低 5-6 dB(A)。其次,通过广泛的风洞测试筛选了许多后缘降噪概念。选择锯齿进行全尺寸现场测试,并将其安装在具有不同叶片设计的三个不同的风力平台上,与原始(无锯齿)叶片相比,表观声功率级 (Lwa) 降低了 2-4 dB(A)。最后,提出了一种优化风力涡轮机运行的通用方法,以便在最大能量产出的情况下达到目标噪音水平。然后演示了如何将这些降噪技术和运营策略结合起来,使风力发电场布局符合日益严格的当地噪音法规。
在运行过程中,现代航空发动机部件,尤其是高压涡轮 (HPT) 叶片,要经受越来越苛刻的运行条件。此类条件会导致这些部件经历不同类型的时间相关退化,其中之一就是蠕变。开发了一种使用有限元法 (FEM) 的模型,以便能够预测 HPT 叶片的蠕变行为。一家商业航空公司提供的特定飞机的飞行数据记录 (FDR) 用于获取三个不同飞行周期的热数据和机械数据。为了创建 FEM 分析所需的 3D 模型,扫描了 HPT 叶片废料,并获取了其化学成分和材料特性。将收集的数据输入 FEM 模型,并运行不同的模拟,首先使用简化的 3D 矩形块形状,以便更好地建立模型,然后使用从叶片废料中获得的真实 3D 网格。观察到了位移方面的总体预期行为,特别是在叶片的后缘。因此,给定一组 FDR 数据,这种模型可用于预测涡轮叶片寿命。© 2016 作者。由 Elsevier B.V. 出版。同行评审由 PCF 2016 科学委员会负责。
Monge-Concepcion, I. 、Siroka, S.、Berdanier, R.、Barringer, M.、Thole, K. 和 Robak, C.,“非稳定涡轮边缘密封和叶片后缘流动效应”,ASME Turbo Expo 2021 论文集:涡轮机械技术会议和博览会,美国宾夕法尼亚州匹兹堡,GT2021-59273,2021 年。(已接受)。 Siroka, S.、Monge-Concepcion, I.、Berdanier, R.、Barringer, M.、Thole, K.、Robak, C.,“在叶片后缘流存在下将腔体密封效果与时间分辨的边缘密封事件关联起来”,ASME Turbo Expo 2021 论文集:涡轮机械技术会议和博览会,美国宾夕法尼亚州匹兹堡,GT2021-59285,2021 年。(已接受)。Monge-Concepcion, I.、Berdanier, R.、Barringer, M.、Thole, K.、Robak, C.,“评估叶片后缘流对涡轮边缘密封的影响”,ASME。涡轮机械杂志。2020;142(8):081001-081001-12。 doi:10.1115/1.4047611 Berdanier, R.、Monge-Concepcion, I.、Knisely, B.、Barringer, M.、Thole, K. 和 Robak, C.,“不同叶片跨度下定子-转子腔内的密封效果缩放”,ASME。《涡轮机械杂志》。2019 年;141(5): 051007-051007-10。doi:10.115/1.4042423
我们报告了通过在硅衬底上外延生长的最初均匀的硅锗 (SiGe) 薄膜中进行相位分离直接激光写入渐变折射率光波导。我们使用了波长为 532 nm 的连续波 (CW) 激光器。激光束聚焦到厚度为 575 nm、Ge 浓度为 %50 的 SiGe 薄膜表面上直径为 5 µm 的光斑。通过熔化表面来诱导 SiGe 薄膜的成分分离,并通过将激光诱导熔化区的扫描速度控制在 0.1-200 mm/s 的范围内来调整成分分布。在高扫描速度下,扫描激光束会产生移动的富 Ge 熔化区,由于扩散限制的 Ge 传输不足,Ge 含量会在后缘积聚。材料特性表明,激光加工的 SiGe 微条带由富含 Ge 的条带芯(> 70% Ge)和富含 Si 的底层包层(<30% Ge)组成。扫描速度相关的相位分离允许制造具有可调成分分布的渐变折射率 SiGe 波导,这些波导通过光学传输测量和使用模拟的模式分析来表征。我们的方法还可以应用于三元半导体 (AlGaAs) 的伪二元合金,其平衡相图与 SiGe 合金的平衡相图相似。
羊栖菜是东亚地区一种具有商业价值的大型藻类,了解这种大型藻类的繁殖策略对于保护和恢复至关重要。在这里,我们使用种群遗传学方法来确定羊栖菜的繁殖策略。为此,我们执行了两种采样程序:随机采样和方形采样。对于随机采样,我们在相距 700 米的 A、B、C 和 D 地点以 > 1 米的间隔采集了 80 个样本。对于方形采样,我们在 B 和 D 两个地点使用由 10 厘米网格组成的 50 厘米 × 50 厘米方形采集了 207 个样本。使用 14 个(随机采样)或 13 个微卫星(方形采样)通过基因分型识别这些样本中的克隆同源体。对于通过随机采样获得的样本,仅检测到三对克隆对。对于通过样方取样获得的样本,每个样方包含 4– 7 个基株,平均大小为 23.2 ± 14.3 厘米(标准差),最大为 70.7 厘米。地点 B 的无性水平高于地点 D,这可能是由于暴露时间较长。地点 B 位于该物种潮间带的后缘。通过有性生殖的基因流动超过 65% 局限于样方内,而至少 10% 延伸至数米至数公里。综合起来,这些结果表明 S. fusiforme 在小范围内通过有性和无性传播其后代,在更大范围内通过有性传播,无性水平取决于暴露产生的压力。
保守转录因子的不同组合调节眼睛前体细胞的分裂,然后在果蝇(果蝇)幼虫前体组织中诱导感光细胞规范,称为眼盘。在第三龄幼虫寿命中,由凹入细胞层制成的形态发生沟(MF)起源于眼盘后缘,并朝着眼盘前侧传播。MF前面的细胞处于增殖阶段,其后部细胞开始分化为感光体。分化的视网膜细胞形成果蝇中化合物成年眼睛的单位。先前的研究表明,锌指转录因子(TSH)促进了MF前方的细胞分裂。C末端结合蛋白(CTBP)是一种保守的转录共抑制剂,可限制眼盘中的细胞分裂。有趣的是,我们的免疫沉淀分析表明,TSH和CTBP分子在眼盘中相互作用。因此,我们的研究目标是确定分子相互作用是否与果蝇中的眼睛发育途径相关。我们已经开发了蝇菌株,在MF前部的分裂细胞中TSH&CTBP过表达。结果,我们发现苍蝇中没有TSH过度表达的苍蝇中没有或微小的成年眼睛,并且在CTBP过表达的苍蝇中出现了微妙的较大的成年眼。接下来,我们计划通过过度表达TSH&CTBP来评估其相互作用对眼表型的影响来制作双突变体。结果将有助于确定由TSH和CTBP调节的眼睛发育过程。
通过了解控制动力学并可能利用特定现象,可以在设计的最初阶段增强空气动力学系统(例如航空航天器、船舶、潜艇、离岸结构和风力涡轮机)的性能。控制这些系统空气动力学性能的方程可能包括非线性偏微分方程(例如 Navier-Stokes 方程)。计算机硬件和软件的最新进展使得数值模拟成为可能,其中上述方程被离散化并与稳健的数值算法相结合。虽然这些高保真方法在捕捉主要物理特征方面非常有效,但它们涉及以复杂方式相互关联的多种现象,必须以大量自由度来解决。此外,使用这些工具所需的大量计算资源和时间可能会限制模拟大量配置以用于设计目的的能力。这些缺点导致需要开发简化的模拟工具,以降低计算成本,同时体现相关的物理方面和响应特性。在本文中,我们提出了一种基于非稳定涡格法 (UVLM) 的势流求解器(即 PyFly)的快速高效实现。该计算工具可用于模拟运动和变形物体(如拍打的机翼、旋转的叶片、悬索桥面和游动的鱼)的非稳定气动行为。UVLM 计算由加速度和环流现象导致的物体表面压力差异所产生的力。这解释了非稳定效应,例如增加的质量力、束缚环流的增长和尾流。UVLM 仅适用于理想流体、不可压缩、无粘性和无旋流,其中分离线是先验已知的。因此,UVLM 的公式要求流体在后缘平稳离开机翼(通过施加库塔条件),并且不涵盖前缘流动分离的情况和发生强烈机翼尾流相互作用的极端情况。尽管存在所有这些限制,研究工作仍考虑使用 UVLM 设计前向和悬停飞行中的类似鸟类的扑翼 [2、3、4、5]、风力涡轮机建模 [6] 以及土木工程结构的控制和振动抑制 [7、8]。虽然快速运行时间通常是科学软件项目的目标,但我们认识到简单的用户界面也是框架使用的一个重要方面。一个理解和使用起来很复杂的高效框架不会减少工程师的解决问题的时间,尽管生成的代码执行速度很快。但是,易于使用的语言的性能通常会慢几个数量级。这两种情况都不理想。PyFly 的目标是提供一个基于 UVLM 的友好气动模拟框架,该框架在计算上也是高效的。我们通过使用混合语言编程来实现这一点。我们使用 Python [9] 进行网格对象的高级管理,使用 Fortran 作为必须高效运行的计算内核。虽然数值方法不会因不同的应用程序而改变,但不同应用程序提出的要求可能会变得复杂难以管理。例如,在扑翼的情况下,需要管理机翼及其尾流。对于对称飞行,我们还必须跟踪机翼镜像的影响。然而,在