核心PWR燃料管理的核心任务是创建负载模式(LP)。在进行许可当局要求的详细设计研究之前,要确保LP的选择符合从安全,运营和其他条件衍生出的限制。同时,经济因素促使操作员发现功率峰值因子(PPF),较长的周期时间和较低的富集以发现燃料排列。这项任务长期以来一直被认为是燃料周期优化的重要组成部分[1] [2]。然而,PWR燃料LPS的组合属性(高维,高非线性,缺乏直接导数信息和多个最小值)描述了一个极为困难的优化问题[3]。一段时间以来,投入的高维度已被认为是一个特殊的问题:“这项工作的主要结论是,重新加载配置设计的基本挑战是由于搜索空间非常大。” [4]
在本文中,探索了大语言模型(LLM)对元启发式算法的自主设计和改进,以解决复杂优化问题。利用LLM的庞大知识和模式识别能力建立一个框架,使这些AI系统能够以结构化格式生成新颖的元神经策略,包括伪代码和算法逻辑。
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
在过去的几年中,通过元启发式算法提出了现实世界优化问题及其有效的解决方案,这是无数研究的催化剂。尽管在设计和使用元启发式方面有数十年的历史进步,但就可怜性,算法设计的正直和新技术成就的性能验证性而言,仍然存在很大的困难。一个明显的例子是源于用于优化的元启发式学作品的稀缺可复制性,这通常是由于歧义和缺乏细节而不可避免的,这是在提出要复制的方法中。此外,在许多情况下,其报告的结果具有可疑的统计意义。这项工作旨在为观众提供一项良好实践的提议,这些建议在进行有关用于优化的元启发式方法的研究时应接受,以提供科学的严格,价值和透明度。为此,我们介绍了一种逐步的方法论,涵盖了解决这个科学领域时应遵循的每个研究阶段。具体来说,将讨论有关问题,解决方案编码,搜索操作员的实施,评估指标,实验设计以及对现实世界绩效的考虑的问题,解决方案编码,实施解决方案,实施解决方案,将讨论经常被忽视但至关重要的方面和有用的建议。最后,我们将概述重要的考虑因素,挑战和研究方向,以实现新开发的优化元启发式学在其在现实世界应用环境上的部署和运营中的成功。
摘要 —远程纠缠分布在大规模量子网络中起着至关重要的作用,而实现纠缠分布的关键因素是能够延长纠缠传输距离的量子路由器(或中继器)。但量子路由器的性能还远未完善,其中量子路由器中有限的量子存储器极大地影响了纠缠分布的速率和效率。为了克服这一挑战,本文提出了一种在存储器受限路径上最大化纠缠分布速率(EDR)的新模型,然后将其转化为纠缠生成和交换子问题。我们提出了一种用于短距离纠缠生成的贪婪算法,以便高效利用量子存储器。对于纠缠交换子问题,我们使用纠缠图(EG)对其进行建模,其解被发现至少是 NP 完全的。在此基础上,我们提出了一种启发式算法,将原始EG划分为多个子问题,每个子问题都可以在多项式时间内使用动态规划(DP)进行求解。通过进行模拟,结果表明我们提出的方案可以实现较高的EDR,并且所开发的算法具有多项式时间上界和合理的平均运行时间复杂度。
抽象的许多具有挑战性的调度,计划和资源分配问题与现实世界输入数据和硬性问题约束有关,并减少了优化成本函数,而不是由综合定义的可行集合(例如图形的颜色)。使用量子近似优化算法来解决量子计算机解决此类问题,我们提出了新型有效的量子交替运算符ANSATZ(QAOA)构造,以优化对和弦图的适当色素的优化问题。作为我们的主要应用程序,我们考虑了飞行门分配问题,其中将航班分配到机场大门以最大程度地减少所有乘客的总运输时间,并且可行的分配对应于从输入数据中派生的冲突图的适当图形颜色。我们利用经典算法和图形理论的想法来表明我们的构造具有将量子状态进化限制为可行子空间的理想特性,并满足了大多数问题参数制度的特定可及性条件。使用经典预处理我们表明,我们可以有效地找到并构建合适的初始量子(叠加)状态。我们详细介绍了我们的构造,包括对一组通用的基本量子门的明确分解,我们用来将所需资源缩放限制为输入参数的低度多项式。尤其是我们得出了新颖的QAOA混合操作员,并表明他们的实施成本与QAOA阶段运算符的飞行门分配相称。包括许多量子电路图,以便我们的构造可以用作开发和实施量子栅极模型方法的模板,以提供多种潜在影响的现实世界应用。
选择机器学习模型,用于识别两个类之间的最佳阈值,例如非表达和表现性的MIDI轨道,需要仔细考虑数据的特定char-cher-cher-cher-cher-tecteristical和分析目标。逻辑回归通常受到青睐。该模型通过对给定输入属于两个类之一的概率进行建模,为分类提供了一个清晰,可解释的框架。逻辑回归的输出是0到1之间的连续概率得分,可以直接确定和调整决策阈值。这种简单性和直接性使逻辑回归特别有吸引力,当时主要目标是确定可靠且易于解释的阈值。
与分布式计算范式一起出现了5G,称为边缘计算范围,通过减少网络潜伏期和能源消耗并提供可扩展性的机会,促使行业发生了巨大变化。边缘计算通过将数据中心放置在网络边缘来扩展用户资源受限设备的功能。计算卸载通过允许用户任务的迁移到边缘服务器来启用边缘计算。确定移动设备可以卸载任务以及在哪个服务器上卸载是否有益,而环境变量(例如可用性,加载,网络质量等)是有益的。,正在动态变化,是一个具有挑战性的问题,需要仔细考虑才能实现更好的绩效。该项目着重于提出轻巧和效率的算法,以从移动设备的角度进行卸载决策,以使用户受益。随后,启发式技术被研究为找到快速但优化解决方案的一种方式。这些技术已与多臂强盗算法结合使用,称为折扣上限置信度(DUCB),以迅速做出最佳决策。调查结果表明,这些启发式方法无法处理问题的动态性,并且DUCB提供了适应不断变化的情况而不必继续添加额外参数的能力。总体而言,DUCB算法在本地能源消耗方面的性能更好,并且可以改善大多数时间的服务时间。
摘要。在任何网站或百科全书中,例如大不列颠或维基百科,在“启发式”条目下,人们可以从生活的各个领域找到许多定义,参考和示例。但是,本文的作者无法找到与技术相关的示例,尤其是在机械工程中。这个事实激发了我们解决这个主题,尤其是因为实践和日常生活中的许多具体示例似乎非常适合证明启发式方法论在技术科学中的相关性。根据作者,在这种情况下,涡轮机械似乎特别感兴趣。这是关键的机械,即,失败威胁人类生命的机械。因此,开发高级工具来分析它们的重要性,尤其是在整个操作范围内(稳定和不稳定)。使用这些工具,可以有效地在决策过程中使用其智力,直觉和常识。因此形成了经典的启发式共生。本文展示了一个名为Meswir的高级计算机系统,该系统是在Gdańsk(IMP PAN)的波兰科学院流体流量机械研究所开发的,该机械产生了一系列有趣的诊断信息,包括多个旋转和与不平衡载体有关的多个旋转和随机错误。该研究是使用高速,低功率涡轮机作为例子进行的。尽管没有正式的理论证明其正确性,但获得的结果有助于得出正确的结论并做出明智的决策,这是决策启发式方法的本质。
摘要:近几十年来,脑机接口 (BCI) 已成为研究的前沿领域。特征选择对于降低数据集的维度、提高计算效率和增强 BCI 的性能至关重要。使用与活动相关的特征可以在所需任务中获得较高的分类率。本研究提出了一种基于包装器的元启发式特征选择框架,用于使用功能性近红外光谱 (fNIRS) 的 BCI 应用。在这里,从所有可用通道计算时间统计特征(即平均值、斜率、最大值、偏度和峰度)以形成训练向量。使用基于 k 最近邻的成本函数测试了七种元启发式优化算法的分类性能:粒子群优化、布谷鸟搜索优化、萤火虫算法、蝙蝠算法、花授粉优化、鲸鱼优化和灰狼优化 (GWO)。基于来自 29 名健康受试者的运动想象 (MI) 和心算 (MA) 任务的在线数据集,对所提出的方法进行了验证。结果表明,与从全套特征中获得的特征相比,利用从元启发式优化算法中选择的特征可以显著提高分类准确率。所有上述元启发式算法都提高了分类准确率并减小了特征向量大小。GWO 对 MA、MI 和四类(左手和右手 MI、MA 和基线)任务的平均分类率最高(p < 0.01),分别为 94.83 ± 5.5%、92.57 ± 6.9% 和 85.66 ± 7.3%。所提出的框架可能有助于在训练阶段为基于 fNIRS 的稳健 BCI 应用选择合适的特征。