生物启示是一个多学科领域,涉及用于测量,监测和操纵生物系统的系统和设备的开发和应用。通过提供有关人体生理,生化和电气参数的精确数据,这些仪器在医学诊断,研究和治疗中起着至关重要的作用。生物工程,电子和医学科学的整合导致创建了各种设备,这些设备从简单的温度计到MRI和CT扫描仪(例如MRI和CT扫描仪)的复杂成像技术。本文探讨了生物启示的范围,其在医疗保健中的应用,该领域的挑战以及生物启发技术的未来方向。随着技术的快速发展,生物启示仍然是改善患者护理,实现早期疾病检测并增强治疗性干预措施的关键工具。
推理和问答作为人类的基本认知功能,一直是人工智能面临的重大障碍。虽然大型语言模型(LLM)取得了显著的成功,但将外显记忆与结构化推理能力相结合仍然是一个持续的难题。可区分神经计算机(DNC)模型虽然在一定程度上解决了这些问题,但仍然面临着算法复杂度高、收敛速度慢、鲁棒性有限等挑战。受大脑学习和记忆机制的启发,本文提出了一种基于记忆转换的可区分神经计算机(MT-DNC)模型。MT-DNC 在 DNC 框架内整合了工作记忆和长期记忆,使这些记忆系统之间能够自主转换获得的经验。这有助于有效地提取知识并增强推理能力。实验结果
差异隐私 (DP) [1,2] 是一个严格的数学框架,用于在分析和处理数据集的同时保留每个个体的信息。直观地说,差异隐私算法可以学习由 n 个用户组成的数据集的统计属性,但几乎不会泄露每个用户的任何信息。在处理医院数据、银行、社交媒体等敏感数据时,此类机制具有重要意义。除了隐私保护数据分析外,差异隐私还在计算机科学的其他领域找到了多种应用,如机器学习 [3、4、5、6]、统计学习理论 [7、8、9、10]、机制设计 [11]。自其推出以来,已开发出多种用于隐私数据分析设计的分析工具 [12、13、14、15]。最常见的是,这些机制利用诸如在最终输出中添加噪声或将输入随机化之类的技术。可以使用简单的工具(例如基本组合规则和后处理的鲁棒性)对由这些块构建的复杂机制进行松散的分析。然而,实际应用中隐私和实用性之间的固有权衡引发了更细化规则的发展,从而带来了更严格的隐私界限。这个方向的趋势是表明多种随机性来源放大了标准 DP 机制的保证。特别是,已经证明了子采样、迭代、混合和改组等 DP 放大结果 [16,17,18,19]。鉴于过去几十年量子计算和量子信息对计算机科学不同领域产生了重大影响,一个有趣的问题是量子和量子启发算法是否可以增强差异隐私。随着如今噪声中型量子设备 (NISQ) 的出现,这个问题变得更加重要 [20]。一方面,这些设备的噪声特性(之前也被 [21] 所利用),另一方面,量子算法的潜在能力,使得这种量子或混合量子经典机制成为差异隐私角度的一个有趣研究课题。此外,机器学习和差异隐私之间的联系表明,回答这个问题可以带来对量子机器学习能力的有趣见解。
表型驱动的方法通过分析将患病与健康状态区分开的表型特征来鉴定遇到疾病的化合物。这些方法可以指导发现有针对性的扰动,包括小分子药物和遗传干预措施,这些扰动将疾病表型调节针对更健康状态。在这里,我们介绍了PDGRAPHER,这是一种因果启发的图形神经网络(GNN),旨在预测能够逆转疾病表型的能够逆转脑臂(一组治疗靶标)。与学习扰动如何改变表型的方法不同,Pdgrapher解决了直接预测实现所需响应所需的急性的信息问题。pdgrapher是一种将疾病细胞态嵌入基因调节或蛋白质 - 蛋白质相互作用网络中的GNN,学习了这些状态的潜在表示,并确定最佳的组合扰动,最有效地将患病的状态转移到该潜在的潜在水平内所需的身影状态。在具有化学性能的九种细胞系中的实验中,PDGRAPHER鉴定出比竞争方法高达13.33%的有效脑扰手,并获得了高达0.12的归一化折扣累积增益,以高达0.12个,以分类治疗靶标。它还在十个遗传扰动数据集上表现出竞争性能。PDGRAPHER的一个主要优势是其直接的预测范式,与传统上在表型驱动的研究中构成的间接和计算密集型模型相反。与现有方法相比,这种方法可加速训练高达25倍。pdgrapher提供了一种快速的方法,用于识别触觉扰动和推进表型驱动的药物发现。
我们提出了一个受皮层基底系统 (CX-BG) 启发的发展模型,用于婴儿的发声学习,并解决他们在听到具有不同音调和音高的陌生声音时面临的对应不匹配问题。该模型基于神经架构 INFERNO,代表循环神经网络的迭代自由能优化。自由能最小化用于快速探索、选择和学习要执行的最佳操作选择(例如声音产生),以便尽可能准确地重现和控制代表所需感知(例如声音类别)的脉冲序列。我们在本文中详细介绍了 CX-BG 系统,该系统负责在几毫秒的量级上将声音和运动原语因果联系起来。使用小型和大型音频数据库进行的两个实验展示了我们的神经架构在发声学习期间和与未听过的声音(不同性别和音调)进行声学匹配时检索音频原语的探索、泛化和抗噪能力。
在过去的几十年中,机器人技术已被广泛引入到不同的医疗应用中,例如手术操作和康复工程,以提高医疗的效率和质量。但是,这些机器人通常需要与人类相互作用,并通过小开口操纵其复杂的结构和内部器官,这对当前的感应,驱动和控制策略带来了巨大的挑战(Muscolo和Fiorini,2023; Sun and Lueth,2023b)。为了解决这些问题,许多研究人员已将以生物学启发的技术引入医疗机器人。For example, snake-like soft robots are used to achieve flexible bending motions in minimally invasive surgery ( Burgner-Kahrs et al., 2015 ; Lin et al., 2024 ; Cianchetti et al., 2018 ; Ashuri et al., 2020 ; Sun et al., 2020 ; Sun and Lueth, 2023a ), while insect-inspired exoskeleton robots can provide walking assistance to patients残疾人(Shi等,2019; Yang等,2023; Liao等,2023)。在本研究主题中,我们旨在介绍以生物启发的技术的最新发展和成就,以支持医学机器人技术领域的未来研究方向,包括结构性设计,建模,制造,制造,传感,促进和控制。由于呼吁参与,最终在本研究主题中接受并收集了七篇论文。
在计算机视觉中,视频流中人体动作的识别是一项具有挑战性的任务,其主要应用领域包括脑机接口和监控。深度学习最近取得了显著的成果,但在实践中却很难使用,因为它的训练需要大量数据集和专用的耗能硬件。在这项工作中,我们提出了一种光子硬件方法。我们的实验装置由现成的组件组成,并实现了一个易于训练的循环神经网络,该网络有 16,384 个节点,可扩展到数十万个节点。该系统基于储层计算范式,经过训练,可以使用原始帧作为输入,或者使用定向梯度直方图算法提取的一组特征,从 KTH 视频数据库中识别六种人体动作。我们报告的分类准确率为 91.3%,与最先进的数字实现相当,同时与现有硬件方法相比,处理速度更快。由于光子架构提供的大规模并行处理能力,我们预计这项工作将为实时视频处理的简单可重构和节能的解决方案铺平道路。
源于遗传和生物力学因素之间的动态相互作用所产生的发展复杂性,使基因型和表型在进化中的变化方式变化。作为范式系统,我们探讨了发育因素的变化如何产生典型的牙齿形状过渡。由于牙齿发育主要是在哺乳动物中研究的,因此我们通过研究鲨鱼中牙齿多样性的发展为更广泛的理解做出了贡献。为此,我们建立了一个通用但现实的,数学的数学模型。我们表明,它重现了牙齿发育的关键特征,以及小斑点catsharks scyliorhinus canicula的真实牙齿形状变化。我们通过与体内实验进行比较来验证我们的模型。引人注目的是,我们观察到牙齿形状之间的发育过渡往往是高度退化的,即使对于复杂的表型也是如此。我们还发现,参与牙齿形状转变的发育参数集往往不对称地取决于该过渡的方向。一起,我们的发现为我们对发展变化如何导致自适应表型变化和特质在复杂的,表型高度多样化的结构中的理解提供了宝贵的基础。
摘要 — 受大脑启发的基于事件的神经形态处理系统已成为一种有前途的技术,特别是用于生物医学电路和系统。然而,神经网络的神经形态和生物实现都具有关键的能量和内存限制。为了最大限度地减少多核神经形态处理器中内存资源的使用,我们提出了一种从生物神经网络中汲取灵感的网络设计方法。我们使用这种方法设计了一种针对小世界网络优化的新路由方案,同时提出了一种硬件感知的布局算法,该算法优化了小世界网络模型的资源分配。我们用一个典型的小世界网络验证了该算法,并给出了从中衍生的其他网络的初步结果。索引术语 — 编译器、神经形态处理器、分层路由、小世界网络、多核、扩展、皮质网络
半导体技术的快速发展需要创新方法来提高器件的性能和效率。本文讨论了使用量子启发式人工智能模型作为优化半导体器件的先进解决方案。我们在真实数据集的帮助下创建和训练这些人工智能模型,以准确预测和改进不同半导体元件的重要性能参数。与传统的优化方法不同,量子启发式人工智能利用量子计算原理的力量更有效地探索复杂的参数空间,从而产生远远优越的优化结果。我们的实验进一步表明,此类模型在性能预测方面具有更高的准确性,并且将优化所需的时间和计算资源减少了几个数量级。所提出的方法可以通过集成真实数据来实现这一点,从而使整个方法实用且稳健。克服这些挑战将有助于半导体行业满足速度、尺寸和能源效率不断增长的需求。本文研究了量子启发式人工智能为下一代电子技术半导体设计和制造领域带来革命性的潜力。