Loading...
机构名称:
¥ 5.0

表型驱动的方法通过分析将患病与健康状态区分开的表型特征来鉴定遇到疾病的化合物。这些方法可以指导发现有针对性的扰动,包括小分子药物和遗传干预措施,这些扰动将疾病表型调节针对更健康状态。在这里,我们介绍了PDGRAPHER,这是一种因果启发的图形神经网络(GNN),旨在预测能够逆转疾病表型的能够逆转脑臂(一组治疗靶标)。与学习扰动如何改变表型的方法不同,Pdgrapher解决了直接预测实现所需响应所需的急性的信息问题。pdgrapher是一种将疾病细胞态嵌入基因调节或蛋白质 - 蛋白质相互作用网络中的GNN,学习了这些状态的潜在表示,并确定最佳的组合扰动,最有效地将患病的状态转移到该潜在的潜在水平内所需的身影状态。在具有化学性能的九种细胞系中的实验中,PDGRAPHER鉴定出比竞争方法高达13.33%的有效脑扰手,并获得了高达0.12的归一化折扣累积增益,以高达0.12个,以分类治疗靶标。它还在十个遗传扰动数据集上表现出竞争性能。PDGRAPHER的一个主要优势是其直接的预测范式,与传统上在表型驱动的研究中构成的间接和计算密集型模型相反。与现有方法相比,这种方法可加速训练高达25倍。pdgrapher提供了一种快速的方法,用于识别触觉扰动和推进表型驱动的药物发现。

使用因果启发的神经网络对治疗性扰动的组合预测

使用因果启发的神经网络对治疗性扰动的组合预测PDF文件第1页

使用因果启发的神经网络对治疗性扰动的组合预测PDF文件第2页

使用因果启发的神经网络对治疗性扰动的组合预测PDF文件第3页

使用因果启发的神经网络对治疗性扰动的组合预测PDF文件第4页

使用因果启发的神经网络对治疗性扰动的组合预测PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥5.0