抽象的药物组合疗法在解决肿瘤异质性问题时在许多方面都优于单一治疗癌症治疗。对于湿lab实验,由于可能的药物对搜索空间,筛选新型的协同药对具有挑战性。因此,已经开发了计算方法来预测具有潜在协同功能的药物对。尽管当前模型取得了成功,但对其他数据集的概括的力量以及了解化学化学相互作用或化学样本相互作用机制的理解是缺乏研究,从而阻碍了实际应用的当前算法。在本文中,我们提出了一种基于多头注意力机制的DTSYN(药物对协同预测的双变压器模型)的深神经模型,以鉴定新的药物组合。我们设计了一种细粒状变压器,用于捕获化学下结构基因和基因 - 基因关联以及一种用于提取化学化学化学和化学细胞线相互作用的粗粒状变压器。dtsyn在曲线(ROC AUC)下达到了最高的接收器工作特征区域,为0.73,0.78。0.82和0.81在四个不同的交叉验证任务上,表现优于所有竞争方法。此外,DTSYN在五个独立数据集中实现了最佳的真实正率(TPR)。消融研究表明,两个变压器块都导致了DTSYN的性能。此外,DTSYN可以在化学物质和细胞系之间提取相互作用,这可能代表了药物作用的机制。因此,我们设想模型是通过使用化学物质和转录组数据来确定协同药物对优先级的有价值工具。
主要关键词