在当今时代,通过查看大量磁共振成像 (MRI) 图像来亲自发现脑肿瘤是一个既极其耗时又容易出错的过程。它可能会阻止患者接受适当的医疗治疗。同样,由于涉及大量图像数据集,完成这项工作可能需要大量时间。由于正常组织和构成脑肿瘤的细胞之间存在惊人的视觉相似性,因此分割肿瘤区域的过程可能是一项艰巨的任务。因此,拥有一个极其准确的自动肿瘤检测系统是绝对必要的。在本文中,我们使用卷积神经网络 (CNN)、经典分类器和深度学习 (DL) 实现了一个在 2D MRI 扫描中自动检测和分割脑肿瘤的系统。为了充分训练算法,我们收集了大量具有各种肿瘤大小、位置、形式和图像强度的 MRI 图片。这项研究已使用支持向量机 (SVM) 分类器和几种不同的激活方法(softmax、RMSProp、sigmoid)进行了双重检查。由于“Python”是一种快速高效的编程语言,我们使用“TensorFlow”和“Keras”来开发我们提出的解决方案。在我们的工作过程中,CNN 能够达到 99.83% 的准确率,这优于迄今为止取得的结果。我们基于 CNN 的模型将帮助医疗专业人员在 MRI 扫描中准确检测脑肿瘤,这将显著提高患者的治疗率。
主要关键词